
Leveraging Channel Diversity for

Key Establishment in Wireless Sensor Networks
Technical Report

December 2005

Matthew J. Miller

Department of Computer Science,

and Coordinated Science Laboratory

University of Illinois at Urbana-Champaign

mjmille2@uiuc.edu

Nitin H. Vaidya

Department of Electrical and Computer Engineering,

and Coordinated Science Laboratory

University of Illinois at Urbana-Champaign

nhv@uiuc.edu

Abstract— As the use of sensor networks increases, security
in this domain becomes a very real concern. One fundamental
aspect of providing confidentiality and authentication is key
distribution. While public-key encryption has provided these
properties historically, sensors are resource constrained and
benefit from symmetric key approaches.

In this work, we propose a novel protocol for symmetric key
distribution that uses the multiple channels available on sensor
hardware. This channel diversity, along with spatial diversity of
device locations, allows neighboring sensors to establish secure
link keys from plaintext keys that are broadcast by sensors in
their neighborhood. In particular, we show that using even one

extra channel during the initialization procedure significantly
improves the security of key establishment.

Via analysis and simulation, we show that our protocol
performs well in terms of network connectivity and resilience to
colluding malicious devices, when compared to previous work. We
show that our protocol can achieve over 90% connectivity among
neighboring sensors with link keys that are uncompromised
even when 80% of the devices in the network are malicious
and collude. Finally, we present a thorough discussion of the
comparative advantages and disadvantages of our approach
compared to previous techniques.

I. INTRODUCTION

As sensor networks become more ubiquitous, security be-

comes a major concern. It is also an excellent opportunity for

researchers to integrate security in the initial stages of protocol

design, rather than an added afterthought as has occurred in

many previous network protocols. To this end, an important

aspect of sensor network security is key establishment. Us-

ing secure keys is the foundation of many other aspects of

security such as encryption for confidentiality and message

authentication for integrity.

Certain properties of sensor networks make the key estab-

lishment problem unique compared to protocols for other types

of networks:

• Sensors are resource constrained: The sensors are gener-

ally assumed to be small devices that are barely notice-

able in most environments. This implies that resources

This is an extended version of a paper (edited for space considerations)

that appears in IEEE Infocom 2006 [1]. This work is partially funded by a

NSF fellowship.

such as memory, computation power, and transmission

rates are much more constrained than in desktops and

laptops. As an example, Mica Motes [2] have a CPU

speed of 4 MHz, a few hundred kilobytes of memory, and

a bitrate of 19.2 kbps. From a security perspective, this

means that symmetric keys are preferable to asymmetric

keys and, ideally, only a small portion of memory is

devoted to key material [3]–[7].

• Packets are broadcast over the air: This is true for wire-

less networks of all types and means that it is much easier

for an adversary to tap into a device’s communication

channel. Thus, it is assumed that an attacker can overhear

any packet transmitted in its vicinity.

• Deployment may be large in scale: Networks may be on

the order of thousands of sensors. Thus, it is preferable

to localize key establishment as much as possible.

• Topology may be uncontrolled: It is envisaged that sen-

sors may, for example, be tossed out of an airplane to

monitor an area. In such a case, there is no advance

knowledge of which sensors will be neighbors in the

network. Thus, it is conceivable that a device is equally

likely to be neighbors with any of the N sensors being

deployed. If a sensor wishes to share a secret key with

each of its neighbors, it needs to store N −1 in memory,

creating a scalability problem given the memory size of

the sensors and the potentially large scale of the network.

• Deployment may be in hostile territory: Sensors may be

used to monitor enemy areas, therefore it is possible that

an adversary may be able to populate the network with a

significant number of its own devices.

• Planned incremental additions maybe desired: Sensor

networks may be long-lived and require the owner to

deploy new sensors as older ones fail (whether mali-

ciously or due to battery exhaustion). Additionally, it may

be desirable for an owner to occasionally “upgrade” the

network by increasing the density of the sensors to get

better sensing coverage. In this work, we assume that

incremental additions are relatively rare events that can

be planned reasonably well in advance.

Given these properties, we design a key establishment

protocol based on symmetric cryptography that can scale to

hundreds or thousands of sensors without any prior knowledge

of sensor locations and demonstrate resilience to the threat

model described in Section III-B. In this paper, we focus

on distributing pairwise keys between one-hop neighbors in

a sensor network. Pairwise keys are important in sensor

networks for a couple of reasons. First, when sensors are

sending their data to a sink, it allows secure aggregation of

data at each hop since a sensor shares a secret key with each

of its children as well as its parent. Second, pairwise keys can

be used to authenticate a hash chain commitment that can then

be used to do, for example, authenticated broadcasts [8].

The design space for pairwise key distribution lies between

two extremes. On one end, each sensor could be loaded

with N − 1 keys prior to deployment such that it shares

a secret key with every other sensor in the network. This

scheme offers the most security since no information about

the keys is ever broadcast and a compromised sensor gives an

attacker no information about keys being used by other sensor

pairs. However, this scheme suffers greatly from a scalability

viewpoint since a sensor may need to store thousands of keys,

of which it probably only uses a small subset.

At the other extreme, each sensor is given one key which

it shares with every other sensor in the network. From a scal-

ability viewpoint, this scheme is excellent since a sensor only

stores one key regardless of the size of the network. However,

this scheme offers little resilience to an attacker since if one

device is compromised, the communication between every pair

of sensors is also compromised.

The major contributions of this work are as follows. First,

we present a novel, distributed protocol that requires a small

amount of memory for storage and, with high probability,

ensures each link in the network shares a unique key. Through

analysis, we show the properties of our protocol and demon-

strate that it is feasible within the resource constraints of

current sensor hardware.

Second, we show that diversity of sensor channels and

location can be a benefit to sensor network security. While

such diversity has been widely used to improve performance

in wireless networks (e.g., increasing spatial reuse, decreasing

bit errors), to our knowledge, this is the first work to apply

these concepts to symmetric key establishment. In particular,

we show that the location diversity of randomly deployed

sensors greatly improves resilience to adversarial hardware

that is deployed in the same manner. It is also demonstrated

that using only one extra channel during initialization (i.e.,

using two channels instead of one) greatly improves security.

This paper is organized as follows. In Section II we review

related work. Section III gives some background information

relevant to our protocol. Section IV presents our proposed

protocol. Properties of the protocol are demonstrated via

analysis in Section V and via simulation in Section VI. We

compare our protocol to other key establishment mechanisms

in Section VIII. In Section VII we discuss extensions to the

protocol to support incremental sensor deployment. Section IX

discusses future work and Section X concludes the paper.

II. RELATED WORK

In [9], the SPINS security architecture for sensor networks

is presented. It includes a key establishment protocol that

requires two sensors to get a pairwise key from a trusted

server with which both of the sensors share a secret key. A

disadvantage of this approach is that the server may become

a bottleneck in large networks. The LEAP architecture [10]

provides a method of establishing pairwise keys provided

sensors cannot be compromised during a short initialization

phase after deployment and the sensor hardware can be trusted

to completely erase keying material after initialization.

Eschenauer and Gligor [6] were among the first to consider

key predistribution for sensor networks. In their work, referred

to as the basic scheme, sensors are loaded with randomly

chosen keys out of a master key pool prior to deployment.

After deployment, a sensor can securely communicate with

its neighbors if it shares at least one key in common with the

neighbor. Chan et al. [3] extend the basic scheme to require

neighbors to share q keys in common before a link is possible.

This improves security at the cost of decreased connectivity.

Their work also proposes the idea of using multiple node

disjoint paths to strengthen security. This is a different form

of diversity than what we propose, but demonstrates how the

concept can improve security in the form of diverse path

selection. Other schemes propose that keys be distributed

deterministically based on a sensor’s ID [11], [12].

Du et al. [4] adapt a key predistribution scheme originally

proposed by Blom [13] for sensor networks by using finite

fields to generate multiple key spaces that can be randomly

deployed to sensors. Liu et al. [5] extend a key distribution

method proposed by Blundo et al. [14] that uses polynomial

based distribution methods. In Section VIII-A, we further

discuss the comparative advantages and disadvantages of our

approach compared to key predistribution schemes in general.

The work most similar to ours is that of Anderson et

al. [7]. Their protocol is based on the assumption that the

number of adversary devices in the network at the time of

key establishment is very small (in their results, less than

3% of the devices are adversaries). Thus, during initialization,

a sensor u broadcasts a randomly generated plaintext key,

ku, that is overheard by all its one-hop neighbors (including

adversaries). Each of u’s neighbors replies with the message

{v, kuv}ku
, where v is the neighbor’s ID and kuv is a pairwise

key randomly generated by v.1 After this exchange, u and

v use key kuv for communication. Power control is used to

reduce the number of devices that overhear the key exchange.

In Section VIII-B, we discuss in detail the differences

between our work and Anderson’s. We briefly mention these

differences here. First, our protocol is much more resilient to

eavesdropping by attacking devices since we leverage channel

1The notation {M}k denotes a message, M , encrypted using key k.

diversity and utilize location diversity more.2 Second, a link

cannot be authenticated in Anderson’s scheme since u or v has

no way to verify the sender of the messages. In contrast, we

provide mechanisms that allow a trusted source to authenticate

sensor IDs and broadcasted keys. Refer to Section VIII-B for

more detail about these differences.

III. BACKGROUND

A. System Model

We assume that the sensors are deployed such that their

locations are distributed uniformly at random in a desired

area. In our model, the network is relatively dense (e.g., more

than ten one-hop neighbors per sensor) so there are multiple

neighbors which a sensor can overhear.

Our analysis also assumes a radio model that can be

represented by unit disks and that links are symmetric; so if

A can hear B, then B can also hear A. As part of future

work, discussed in Section IX, we plan to implement the

protocol do determine the effects of a more realistic physical

layer. We assume that the radio can communicate on multiple,

non-interfering channels, but can only listen to or transmit

on a single channel at any given time. For example, devices

such as Mica Mote sensors [2] and any 802.11 compliant

hardware [15] can use frequency-division multiple access

(FDMA) to achieve this.

B. Threat Model

In this work, an attacker’s primary objective is to learn

the link key that a legitimate pair of sensors is using for

communication. If the attacker is able to learn this key, then the

encryption and authentication for the link is no longer secure.

As in previous work [3]–[7], we consider denial-of-service to

be beyond the scope of this paper. See [16] for a discussion of

possible solutions to address such attacks in sensor networks.

The attacker has two means by which it attempts to learn

link keys. The first is by compromising legitimate sensors

and learning all the keying material that is stored on the

device. In this case, obviously all communication with the

compromised sensor becomes insecure. However, learning the

keying material of the compromised sensor may also assist

the attacker in learning the link keys being used by non-

compromised sensors. In this work, we assume that attackers

can compromise sensors any time after deployment. We note

that this is a stronger attack model than is assumed in some

key establishment protocols [10] in which an attacker can only

compromise sensors after some initialization time.

The second method by which an attacker may attempt to

learn link keys is listening to the plaintext keys exchanged

during the initialization phase, discussed in Section IV. Since

all the information needed to create link keys is broadcast in

plaintext at some point during the initialization, the attacker

may be able to reconstruct link keys by eavesdropping.

2We note that the goal in [7], unlike our work, is not to make it difficult for
a nearby attacker to compromise a link nor to operate in hostile environments
where there may be a large number of adversaries.

As in [7], we assume that the hardware that an attacker

deploys is similar to the legitimate sensor hardware in the

network. Thus, any radio hardware an attacker uses has a

receive threshold equal to or larger than that of the sensors in

the network. That is, for a packet transmitted at a certain power

level, the attacker’s radio cannot receive a packet if it is farther

away than the distance that sensors can receive the packet. As

another result of this assumption, the attacker cannot execute

wormhole attacks whereby colluding devices can propagate

data across the network via an out-of-band channel.

In this work, we do not investigate coordinated channel

assignment and switching protocols that an adversary may use

with multiple radio devices or colluding single radio devices.

Such scenarios are an interesting avenue for future work.

However, we do consider the effects of an attacker adding

more devices that collude by combining the knowledge of their

overheard packets.

C. Bloom Filters [17]

In our protocol, we use Bloom filters [17] to communicate

sets of keys. In this section, we give a brief overview of the

operation of Bloom filters. For more information, the reader is

encouraged to peruse any of the numerous tutorials or surveys

available on the subject (e.g., [18]).

Each sensor is preloaded with the same h one-way hash

functions [19], H1
BF , H2

BF , . . . , Hh
BF .3 Given an input, each

of these hash functions maps an object to a value between 1

and s according to a uniform distribution. The Bloom filter is

a bit vector of s bits. Initially, every bit is set to 0. Given

an object, vi, it is placed in the filter by setting the bits

H1
BF (vi), H

2
BF (vi), . . . , H

h
BF (vi) to 1. Thus, for each object

(say, i = 1 to n) added to the filter, up to h bits are set

to 1. After receiving a Bloom filter, a sensor can check to

see if an object, vj , is in the filter by testing if the bits

H1
BF (vj), H

2
BF (vj), . . . , H

h
BF (vj) are all set to 1. If this test

is true, then the object is considered to be in the filter. False

positives occur when each of the h values for an object, vj ,

maps to a bit that was set to 1 by the hash function for

some object other than vj . In Section V, we investigate what

values of h and s are appropriate for our scheme to avoid

false positives with high probability. However, our scheme

is designed to be robust against occasional false positives as

described in Section IV-E.

D. Merkle Trees [20]

Another cryptographic primitive used in our protocol is

Merkle trees [20]. We use Merkle trees to provide authen-

tication that the set of keys being broadcast by a sensor was

generated by a trusted source prior to deployment.

Assume that a trusted source has m objects that it wishes

to distribute among untrusted sensors. The goal of a Merkle

tree is that when a sensor claims to have a certain object, the

value of that object can be authenticated without contacting

3A one-way function, H , is easy to compute (i.e., given object x, H(x)
can be computed in polynomial time), but hard to invert (i.e., given H(x),
no polynomial time algorithm exists to find y such that H(y) = H(x)).

A B

C D E F

R

v1 v2 v3 v4

A = HM (C||D)

C = HM (v1)

Fig. 1. An example Merkle tree [20] for four objects: v1, v2, v3, v4. The
leaf nodes are generated by doing a one-way hash, HM , on the corresponding
object. The interior nodes are generated by doing a one-way hash, HM , on
a concatenation of the children of a node.

the trusted source. To do this, the trusted source generates

the Merkle tree for the objects prior to deployment and then

loads each sensor with the root of the tree as well as the lg m
interior nodes of the tree needed to verify the authenticity of

each object distributed to the sensor.

Figure 1 gives an example of a Merkle tree for four objects:

v1, v2, v3, v4. First, each leaf node of the tree is generated by

hashing one of the objects. For example, C = HM (v1), where

HM is a one-way hash function [19]. Each of the interior

nodes of the tree is generated by hashing a concatenation of

the node’s left and right child. For example, B = HM (E||F).
This continues until the root, R, is generated.

Each sensor that wishes to later verify the authenticity of

objects is loaded with R by the trusted source. As an example,

consider a sensor that is given object v2 by the trusted source.

The sensor is then also loaded with the values necessary to

authenticate v2 (i.e., C and B). When the sensor wishes to

verify the authenticity of v2, it can do so by transmitting v2

along with the values of C and B. With these values, any

sensor that knows R can verify the authenticity of v2 by

checking that R = HM (HM (C||HM (v2))||B).

IV. PROTOCOL DESCRIPTION

A. Overview

We begin with a brief overview of the details that are

presented in Section IV-B through IV-D. Table I provides a

key for the notation used in this section.

Prior to deployment, each sensor is loaded with a unique,

non-overlapping set of α keys by a trusted source. Unlike

previous work [3], [6], this set of keys is known only to that

sensor and not part of a larger shared pool of keys. Along

with these keys, the sensors are loaded with the Merkle tree

nodes necessary to authenticate the Bloom filter of their α
keys (as discussed in Section IV-B, the actual keys could

be authenticated rather than the Bloom filter at the cost of

increased overhead).

The sensors are then deployed uniformly at random over

a given area. On a common channel, each sensor broadcasts

TABLE I

PROTOCOL NOTATION

Notation Description

c Number of non-interfering channels available

α Number of keys broadcast by each sensor during
initialization

λ Maximum number of advertisement keys from any one of a
sensor’s neighbors

γ Cumulative number of keys a sensor includes in its
advertisement from neighbors

η Minimum number of advertised keys a sensor must share
with a neighboring sensor to engage in communication

h Number of hash functions per Bloom filter

s Size of the Bloom filter (bits)

the Bloom filter of the α keys with which it was loaded along

with the Merkle values necessary to authenticate the filter. This

allows sensors to verify that future keys received from a given

neighbor were given to that neighbor by the trusted source. In

Section IV-B, we discuss this aspect of the protocol in depth

as well as how to deal with attacking devices that attempt to

rebroadcast legitimate keys and generate arbitrary keys.

During initialization, sensors switch their radios to a channel

chosen uniformly at random and choose a non-deterministic

amount of time to listen to the channel before switching to

another channel. Also during this time, the sensors choose

non-deterministic times to broadcast each of their α keys in

plaintext. The key broadcast times are independent of the

channel switching times. This procedure continues until all

sensors have had a chance to broadcast all of their keys. Each

key is sent on the channel to which the sensor is currently

listening at the chosen broadcast time. During this initialization

phase, sensors store every key that they transmit as well as

every key that they overhear in broadcasts by their neighbors.

At the end of the initialization phase, all sensors switch

their radio to a common channel, and perform a key discovery

phase during which a sensor tries to establish a unique key to

communicate with each neighbor. For the discovery phase,

each sensor hashes all its known keys into a Bloom filter and

broadcasts the filter. Every time a sensor overhears a filter, it

searches the Bloom filter of its own keys to determine which

keys it has in common with the sender of the overheard filter.

After the key discovery phase, the key establishment phase

is performed. During key establishment, a sensor broadcasts

a separate message for each filter it overheard in the key

discovery phase. In this message, the sensor includes a Bloom

filter indicating the keys it believes it has in common with

the sender of the original Bloom filter along with a random

nonce encrypted by a link key composed of those shared

keys. If the sensor receives a single acknowledgment with a

properly encrypted, incremented nonce value, a link key has

been established with that neighbor. This process continues

until a sensor has a unique key for each of its neighbors.

At this point, with high probability, the sensor shares a

secret key with each of it neighbors and only needs to

store its link keys, α preloaded keys, and Merkle nodes for

authentication. In Section VII, we discuss how sensors can

be incrementally added after the initial deployment of the

network. Now, we describe the protocol in detail.

B. Predeployment Phase

We now describe how keys for sensors in the initial de-

ployment are loaded onto each device. In Section VII, we

discuss how this phase of the protocol can be extended to allow

incremental sensor additions after this initial deployment.

A trusted authority generates α keys per sensor that are

loaded on each sensor before deployment. The keys generated

for each sensor are unique to that sensor and not part of

a global key pool as has been done in previous work [3],

[6] (i.e., a sensor’s set of keys do not overlap with another

sensor’s set of keys). Once the key sets are generated for the

sensors, the trusted source computes the Bloom filter for each

sensor’s set of keys as described in Section III-C. Finally, the

trusted source creates a Merkle tree, described in Section III-

D, as follows. The leaves of this Merkle tree are generated

by hashing a concatenation of the sensor’s ID with the Bloom

filter of its keys (discussed in Section IV-B), denoted as BF .4

Thus, the Merkle leaf for that sensor is HM (ID||HM (BF)).5

At this point, each sensor is loaded with the α keys that the

trusted source generated for that device, the root of the Merkle

tree, and the lg N interior Merkle nodes needed to authenticate

the sensor’s Bloom filter of its keys, where N is the number

of sensors deployed. After deployment, every sensor listens to

a common channel. During this period, each sensor broadcasts

the Bloom filter of its α preloaded keys along with the lg N
Merkle values needed to authenticate its Bloom filter and ID.

Every sensor stores the ID and Bloom filters for each of its

neighbors for the duration of the key distribution procedure.

When the key broadcasting begins, a sensor only accepts

a key from a neighbor if the key exists in the Bloom filter

associated with the neighbor’s ID. This scheme is vulnerable

to two attacks. First, an attacker may try to assume another

sensor’s identity by rebroadcasting the packets containing a

legitimate sensor’s ID, Bloom filter, and Merkle values and

then rebroadcasting keys that it hears the legitimate sensor

broadcast during key initialization. In Section IV-D, we explain

why an attacker could benefit from such a strategy. However,

such an attack can be detected if any legitimate sensor

overhears a key broadcast twice claiming to be from the same

ID since each key is to be broadcast only once. Alternatively,

the malicious device can be detected if the sensor that is the

victim of identity theft overhears the attacker using its keys

and ID. Such detection will happen with high probability in

relatively dense sensor networks. It is an area of future work

to quantify the optimal strategy for an attacker to attempt to

rebroadcast legitimate packets while remaining undetected.

4Alternatively, the leaves of the Merkle tree could be a hash of each

of the sensor’s keys instead of the Bloom filter of the keys. This would
increase the protocol’s storage and communication overhead, but eliminates
the possibility of false positives and increases robustness against attacks that
generate arbitrary keys. Our work does not explore this approach.

5If there is some knowledge of a sensor’s post-deployment location prior to
deployment, then the techniques from [21] can be used to reduce the amount
of communication required to verify that a sensor’s leaf is legitimate.

The second type of attack is for the malicious devices to

generate arbitrary keys which hash to all 1’s in a legitimate

sensor’s Bloom filter. In Section V, we analyze the effort

required by an attacker to generate these arbitrary keys and see

that somewhere on the order of tens to hundreds of arbitrary

keys must be generated, on average, for an attacker to create

such a key. Also, increasing the size of the Bloom filter can

greatly increase the effort required to generate arbitrary keys.

In applications that require greater immunity to this attack,

at the expense of storage and communication overheard, each

key could be placed as a leaf in the Merkle tree, resulting in

α×N leaves for the tree instead of only N leaves. This would

allow each broadcasted key to be authenticated individually.

C. Initialization Phase

The goal of the initialization phase is that each pair of

neighbors knows a unique subset of keys at the end of the

process. The length of the initialization process depends on

how large α must be to achieve the desired probability that all

links have a unique set of keys and how much contention there

is for the channel. We assume that broadcasts are sent using

CSMA/CA to reduce collisions. In Section V, we analyze what

values of α are appropriate for a deployment.

Neighbor pairs are expected to share a unique subset of

keys because of the channel and spatial diversity in the

network. The primary form of diversity is from the channel

switching of the protocol. The only constraints we make on

the channel switching algorithm are: (1) each of a sensor’s α
keys are broadcast during the initialization phase, (2) that each

broadcast from a sensor is, on average, overheard by a subset

of d/c neighbors, where d is the expected number of one-

hop neighbors of the sensor and c is the number of channels

available, and (3) a different subset of neighbors overhears

each of a sensor’s broadcasts, with high probability. Thus,

channel selection gives diversity in the subset of neighbors

that overhears each of a sensor’s key broadcasts.

This is illustrated in Figure 2 where E is a neighbor of A,

B, and C. We refer to a key that is known by both A and B as

a shared key. In Section IV-D and Section IV-E, we elaborate

on how the shared keys are used to generate a link key for the

sensor pair. The link key is the secret symmetric key that A and

B use for secure communication. When C broadcasts a key,

there is a (1/c)2 probability that A and B are both listening to

the channel on which C broadcasts. Given that A and B are

listening to the same channel on which C broadcasts, there is

a 1− (1/c) probability that E is not listening to that channel.

When this occurs, A and B have a shared key that can keep

the link secure against eavesdropping by E.

The spatial diversity comes from the fact that two neighbors,

say A and B, may overhear broadcasts from a unique set of

common neighbors. Consider the scenario in Figure 2 where

A and B are one-hop neighbors that are both within range of

C and D. However, C and D are not within range of each

other. Thus, for example, if one of A and B’s shared keys

comes from a broadcast by C, then D will not know that key

and, hence, A and B’s link can use the overheard key from C

A B

C

D

E

r

r

Fig. 2. One-hop neighbors A and B can both overhear broadcasts from C
and D. However, C cannot overhear broadcasts from D and vice versa. E is
a one-hop neighbor of A, B, and C.

to secure the link from being compromised by D. Similarly,

if one of A and B’s shared keys comes from D’s broadcast,

then the link can be made secure against eavesdropping by

C. Therefore, over the course of several broadcasts, the link

between A and B is expected to eventually be secure against

eavesdropping by both C and D with high probability.

Another form of diversity from the wireless channel comes

from uncorrelated packet loss. Thus, even if A, B, and E all

listen to the channel on which C broadcasts a key, E may

receive a packet in error that A and B receive correctly. In

this case, A and B learn a key that E does not know. Packet

loss can occur for a couple of reasons. First, it may be lost

due to noise and interference degrading the received signal.

If two sensors do end up in close proximity to each other,

our protocol still provides some security from diversity. There

are two cases to consider. The first is when two sensors are

close enough to have the same set of one-hop neighbors, but

still far enough apart to have uncorrelated packet loss. In

this case, the sensors may still receive a different set of keys

since they are switching to different channels and experiencing

different packet losses. The second case is when the sensors

are within the coherence distance of each other. In this case,

the diversity in key sets still exists since the sensors are

switching to a different set of channels.

D. Key Discovery Phase

When the initialization phase completes after the specified

time, in order to determine a link key, sensors must discover

which keys are known by its neighbors. To reduce communi-

cation overheard, we use Bloom filters [17] to advertise key

sets in a compact manner.

A sensor creates a Bloom filter for advertising its keys by

including each of the α keys that it transmitted and some of

the keys it overheard from the broadcasts of others. We denote

the set of keys that a sensor u overheard from other neighbors

as Ku. Sensor u then chooses a subset of size γ to advertise

in its filter (i.e., γ is a predetermined constant that, with high

probability, is less than |Ku|). Since the sensor knows the

source of each of its overheard keys, there is an upper limit,

λ, placed on how many keys in this advertised subset come

from any one neighbor. This avoids giving disproportionate

influence to any one neighbor in establishing link keys. The

sensor creates its advertisement by placing each of these α+γ
keys into an s-bit Bloom filter. Thus, to place key k in the filter,

a sensor sets the bits H1
BF (k), H2

BF (k), . . . , Hh
BF (k) to one.

A sensor also stores the h values associated with all of the

keys that it overheard or transmitted during the initialization

phase so that it can check its key hashes for inclusion in the

Bloom filters of its neighbors. Using CSMA/CA the sensors

broadcast their s-bit filters.

Upon receiving a filter from one of its neighbors, a sensor

checks to determine which subset of keys it shares with

the sender of the filter. Assume that sensor u overhears an

advertisement from sensor v. Node u checks to see which of

its known keys are included in v’s filter. For each key that all

h associated bits are set in the filter, u adds the key to the list

of keys it potentially shares with v. Because Bloom filters are

susceptible to false positives (but not false negatives), u may

add a key to the list that is unknown to v. In Section IV-E, we

describe how this list of keys is verified. After a filter has been

received from each of u’s neighbors, it has a list of keys that it

believes to be shared with each neighbor. For security, we can

require that a sensor only participates in the key establishment

phase with neighbors that share some minimum number of

keys, η, with the sensor. η can be determined based on the

expected number of keys a link should share such that, with

high probability, their subset of shared keys is unique. We note

that η is similar to the q value in [3].

Now, u attempts to determine a unique subset of keys that it

shares with each neighbor and creates a link key that will be

used for future communication. The set of keys that sensor

u believes it shares with sensor v is denoted as Kuv. To

attempt to create a shared key with v, u chooses a subset

of Kuv of size η. It creates the link key, kuv , as the hash

of these η shared keys: kuv = hash(k1||k2|| . . . ||kη), where

k1, k2, . . . kη ∈ Kuv . Node u will attempt to verify kuv during

the key establishment phase described in Section IV-E.

If a sensor determines that it does not share at least η
keys with some neighbor, then there are a few options. First,

it can choose not to use the link. In a dense network, not

being able to use a small number of links may be acceptable.

Alternatively, the sensors can request that the sensors do

another initialization procedure at a later time to attempt to

add the links,6 though such a technique would require some

authentication mechanism for the request to avoid attackers

spuriously sending such requests. Another option is to use one

of the multipath reinforcement mechanisms described in [3] if

there is enough trust among its neighbors to do so.7

E. Key Establishment Phase

The final phase of the protocol is the key establishment

phase. At this point, each sensor knows of a subset of keys

6If another link key initialization procedure occurs, sensors that established
link keys previously do not attempt to re-establish a new link key.

7Multipath reinforcement allows a sensor pair, A and B, that do not share
η keys to use m shared neighbors, nbr1, . . . , nbrm to establish keys if A
and B both already share η with each of these m neighbors. See [3] for more
details.

that it believes it shares with each of its neighbors (sometimes

this belief may be erroneous as discussed below). Furthermore,

as we show in Section V and Section VI, with high probability,

this subset of keys is unique to that sensor pair. Each sensor

has a list of unique filters received in the key discovery phase.

We refer to this as the filter list. In key establishment, a

sensor, u, challenges its neighbor, v, with the key kuv that

it generated in the previous phase. Specifically, u sends a

random nonce, RN , encrypted by key kuv to v along with

a Bloom filter containing the η keys that compose kuv . This

packet is called a Link Request (LREQ). Thus, LREQ =
(v||u||{RN}kuv

||BF (kuv)), where BF (kuv) is a Bloom filter

containing the keys that compose kuv . We note that the size of

BF (kuv) should be much smaller than the Bloom filters send

during the advertisement phase since, typically, η ≪ α + γ.

When v receives the LREQ, it searches Kv to determine

if it believes it knows every key in BF (kuv). If v can decrypt

the LREQ correctly using the keys that u used to compose

kuv ,8 it will reply with a Link Reply packet (LREP). The

form of this packet is LREP = (u||v||{RN + 1}kuv
). Once

u receives the LREP and verifies that the incremented value

of RN is correct, the link key is established and, with high

probability, kuv is known only to u and v.

It is possible that v is not able to decode u’s LREQ
correctly for one of two reasons. First, there could have been

a false positive when u determined its shared keys from v’s

advertisement and it used the key that caused this false positive

to compose kuv . The second reason is that there was a false

positive when v determined the keys that composed kuv from

the Bloom filter in u’s LREQ. If one of these two event

occur, then v can reply with its own LREQ to u using some

different subset of keys that it believes the two sensors share.

If the sensors are unable to agree on a shared key after some

specified number of LREQ exchanges, then then can resort

to one of the methods described in the previous section (i.e.,

do not establish the link, request another link key initialization

procedure, or use multipath reinforcement [3]).

V. ANALYSIS

In this section, we present analysis, followed by simulation

in Section VI. We use the notation in Table I and Table II.

We consider two sensors, u and v, that have duv common

neighbors. We are interested in the probability that the link

key generated by u and v is known by another sensor, w,

in the system. Thus, our analysis does not consider multiple,

colluding adversary devices. However, the simulation in Sec-

tion VI, addresses this scenario. In our analysis, w has duvw

neighbors that are shared by u, v, and w, which is a subset

of the neighbors shared by u and v (i.e., duvw ≤ duv). In

our analysis, we only consider sensors u, v, w, and the duv

shared neighbors of u and v. In a real network, there may

be many sensors within range of one of the sensors (i.e., u,

v, or w), but not the other two; this is not captured by our

8We assume there are well-known fields in the encrypted part of the LREQ
so that a sensor can verify that it correctly decrypted the random nonce.

TABLE II

ANALYSIS NOTATION

Notation Description

duv Shared one-hop neighbors of sensors u and v

duvw Shared one-hop neighbors of sensors u and v that are also
shared by sensor w

pe Probability of a packet loss

ph Probability a sensor in overhears a key that is broadcast by
one of neighbors

LB(µ) Lower Chernoff bound on the sum of Bernoulli random
variables, where µ is the mean of the sum

UB(µ) Upper Chernoff bound on the sum of Bernoulli random
variables, where µ is the mean of the sum

fp False positive rate for Bloom filter

pa The probability an attacker creates an arbitrary key that
will be accepted as a legitimate key

analysis. In Section VI, we simulate the protocol in a more

realistic setting; our analysis is only intended to give some

intuition into the protocol performance. We then derive the

probability that u and v share at least one key in their key

establishment phase that is unknown to w. Our analysis is

based on worst case bounds, with some probability (discussed

in Appendix I), and we use the notation LB(µ) and UB(µ)
to refer to the lower and upper Chernoff bounds [22] for the

sum of Bernoulli random variables, where the sum has mean

µ. To preserve the flow of the paper, the exact values of the

Chernoff bounds and probability with which the bounds hold

are discussed and derived in Appendix I. In the analysis, we

assume an ideal MAC layer with no collisions. In Section VI,

we simulate the protocol using a more realistic MAC layer.

The probability that a sensor hears a key broadcast by one

of its neighbors, ph, is:

ph =
1

c
(1 − pe) (1)

where c is the number of channels and pe is the probability of a

packet loss. Now, we discuss how to select values for γ, η, and

λ as a function of the bounds on the number of keys a sensor

overhears from its neighbor when each sensor is preloaded

with α keys (refer to Table I for parameter definitions). As

we will show later, we select these values such that, with high

probability, two sensors create a link key that cannot be known

by any other sensors in the network.

Recall from Section IV-D, γ is the total number of keys

in the Bloom filter of a sensor’s advertisement that were

overheard from its neighbors. Additionally, the total number

of keys in the Bloom filter of the sensor’s advertisement is

α + γ. Thus, in order to ensure that, with high probability, u
and v each have at least γ overhead keys to include in the

Bloom filters of their advertisements, we set γ to be the lower

bound on the number of keys overheard by all neighbors:

γ = ⌊duv · LB(αph)⌋ (2)

If γ is larger than this, then we can no longer assume that

both u and v are able to advertise α + γ keys in their Bloom

filters (as is necessary in our analysis).

Given that all sensors are able to advertise α + γ keys in

their Bloom filters, we next focus on selecting η, the number

of keys that u and v must share to have a link. Clearly we

can set η no larger than the lower bound on the expected

number of keys that two sensors share. This lower bound is

explained as follows. Without loss of generality, look at the

advertisement that u broadcasts to v. Node v knows, with high

probability, at least LB(αph) of the keys that u originated. Of

the γ keys that u heard from other neighbors and included in

the Bloom filter of the advertisement, there is a ph probability

that v overheard each of these keys and, thus, knows at least

LB(γph) of these γ keys.9 Therefore, we have:

η = ⌊LB(αph) + LB(γph)⌋ (3)

As mentioned earlier, the values for the Chernoff bounds (LB
and UB) are derived in Appendix I.

Finally, we need to select λ, the maximum number of keys

in the Bloom filter of a sensor’s advertisement from any one

of its neighbors (i.e., the maximum number of w’s transmitted

keys that are included in the advertisement Bloom filter that

u sends to v). Notice from Equation 2, that the value of γ
is based on receiving at least LB(αph) keys from each of

u or v’s duv neighbors. Thus, when u or v compose their

advertisement, it can include LB(αph) keys from each of its

neighbors in its Bloom filter. Since u and v do not know which

of their neighbors may be malicious, it is best to minimize

the maximum number of keys any one neighbor can have in

Bloom filter of their advertisement. Thus, we set λ to be:

λ = ⌊LB(αph)⌋ (4)

If λ is smaller, we can no longer ensure that u and v can

create an advertisement with γ overheard keys in the Bloom

filter. If λ is larger, then, in the worst case, the knowledge that

w has of u and v’s shared keys is increased.

Now, we can calculate the probability that w knows all of

u and v’s η shared keys. Among these η keys, w could have

originated at most λ as discussed above. Thus, the probability

that w knows all of u and v’s keys is given by:

(

duvw

duv

×
⌈UB(duvwαph)⌉

duvwα

)η−λ

(5)

where UB(duvw) is the maximum number of keys a sensor

(e.g., w) overhears during the link key initialization procedure.

Thus, the probability that the link key of u and v is not

known to any of u and v’s neighbors is:

(

1 −

(

duvw

duv

×
⌈UB(duvwαph)⌉

duvwα

)η−λ
)duv

(6)

Finally, we look at the Bloom filter size necessary for our

protocol. For brevity, we do not explain the equations used

to analyze Bloom filters. The reader is referred to [18] for a

detailed derivation and explanation of these equations. We use

9We note this ignores the fact that some of the keys that u includes in the
advertisement Bloom filter originated from v and, hence, v knows these keys
with probability one. This causes the value of η to increase and since we
claim a lower bound it is acceptable to ignore keys transmitted by v that are
included in u’s advertisement Bloom filter.

2 4 6 8 10 12
10

1

10
2

10
3

10
4

Number of Channels

N
u

m
b

e
r

o
f
K

e
y
s

Max Stored Keys

α
α + γ
η

Fig. 3. The size of α, γ, η, and the maximum number of keys stored by a
sensor as a function of the number of channels.

η as an example of the number of objects we wish to place in

a Bloom filter. The minimum filter size (in bits), s, required

for η objects to achieve a false positive rate of fp is:

s ≈ η

(

ln(fp)

ln(0.6185)

)

(7)

and the optimal number of hashes per object, h, is given by:

h ≈ ln 2

(

s

η

)

(8)

As mentioned in Section IV-B, attackers may attempt to

create arbitrary keys that map to all ones in a legitimate

sensor’s Bloom filter. We now determine how many arbitrary

keys an attacker must generate, on average, before it can forge

a key in such a manner. The probability, pa, that an attacker

generates an arbitrary key that maps to one h times is:

pa ≤

(

ηh

s

)h

≈ 1.6968ln(fp) (9)

Thus, the average number of keys the attacker must create

before generating a key that will be accepted as legitimate is

(1/pa). For fp = 10−3, an attacker has to generate around 38

keys on average. However, at the cost of increasing the size

of the Bloom filter, setting fp = 10−5 requires the attacker to

generate 440 keys on average.

A. Numerical Results

We now provide some numerical results from Matlab based

on the above analysis. The default values used in these tests

are: duv = 10, duvw = 7, pe = 0.1, c = 3, and the link is

unique, according to Equation 6, with probability 0.99999.

In Figure 3, we see how some of the analytical values

change as a function of the number of channels. Note that the

vertical-axis is log scale. We see that increasing the number

of channels while maintaining a fixed probability of a unique

link can greatly increase α (and hence the advertisement size),

while the increase in η is modest.

Next, we are interested in the byte overhead required for the

advertisement packet and the LREQ packet. Figure 4 shows

the byte overhead required as a function of the desired false

10
−5

10
−4

10
−3

10
−2

0

50

100

150

200

250

300

350

400

450

500

Bloom Filter False Positive Probability

F
ilt

e
r

S
iz

e
 (

B
y
te

s
)

α Bytes
η Bytes

Fig. 4. Number of bytes required to advertise a sensor’s keys and the shared
keys for a link as a function of the desired false positive rate.

positive rate of the Bloom filter. While the byte overhead for

the advertisement filter is quite large for a sensor network, we

note that the packet can be fragmented for efficiency. Also, we

note that other predistribution schemes [3], [6] require similar,

if not more, overhead for sharing key knowledge even if they

do not explicitly evaluate this metric.

VI. SIMULATION

We simulated our protocol with ns-2 [23]. In each test, 50

sensors are placed uniformly at random such that the density

of the network (i.e., the expected number of one-hop neighbors

per sensor) is 10. Each data point is the average of 30 test runs.

The default values used in the simulations for the protocol

are: α = 100, γ = 100 (i.e., the advertisement size, α + γ,

is 200 keys), and η = 10 (i.e., a sensor pair must share

at least 10 advertised keys for their link to be considered

“connected”). We set λ = α; in future work, we plan to

thoroughly investigate the effects of the λ parameter.

To implement the channel switching and key broadcasting

discussed in Section IV-C, we use the following algorithms.

Sensors are assumed to be synchronized and at fixed intervals,

all of the sensors switch to a new channel uniformly at random.

Within each fixed interval, if a sensor has not broadcast all of

its α keys, it chooses a time uniformly at random to broadcast

one of its remaining keys.

We set 30% of the sensors, chosen uniformly at random,

to be controlled by a malicious entity. In our tests, these

malicious sensors follow the same protocol as the uncom-

promised sensors, however, they collude in their knowledge

of plaintext keys learned during the initialization procedure.

Thus, collusion between malicious devices is global; we do

not restrict them to being neighbors to share their knowledge.

Thus, the attacker is able to compromise a link between two

legitimate sensors if their set of shared keys is found within the

superset of keys known by all the colluding malicious sensors.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

F
ra

c
ti
o

n
 o

f
L

in
k
s
 T

h
a

t
A

re
 C

o
n

n
e

c
te

d

α

c = 1
c = 2
c = 3
c = 7

c = 12

Fig. 5. Connectivity of legitimate sensors vs. α.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

F
ra

c
ti
o
n
 o

f
L
in

k
s

 T
h
a
t

A
re

 C
o
n
n
e
c
te

d
 a

n
d

 S
e

c
u

re

α

c = 1
c = 2
c = 3
c = 7

c = 12

Fig. 6. Secure connectivity of legitimate sensors vs. α.

In our tests, we vary α, c (the number of channels), and the

percentage of colluding malicious sensors and consider the

following metrics:

Connectivity: defined as the fraction of links between le-

gitimate sensors in the network that share at least η
advertised keys.

Secure Connectivity: the fraction of links between legitimate

sensors that use a key set with at least one key that it

unknown to the colluding malicious sensors.

In Figure 5, we see how increasing α improves the con-

nectivity of legitimate sensor pairs for different values of c.

This is expected since sensor pairs will share more keys when

their total number of known keys increases. We also note that

the connectivity improves with a smaller number of channels,

since the probability of a sensor overhearing a neighbor’s

broadcast is increased.

However, as shown in Figure 6, using a smaller number

of channels is not always good from a security perspective.

In Figure 5, using c = 1 gave a connected topology for all

values of α. However, in Figure 6, we see that less than half

of the connected links for c = 1 remain uncompromised by

the attacker. All of the other values of c > 1 are much more

resilient to attacker compromise, though they require a larger

value of α for all of the links to be connected.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

F
ra

c
ti
o

n
 o

f
L

in
k
s
 T

h
a

t
A

re
 C

o
n

n
e

c
te

d

Number of Channels

α = 25
α = 50
α = 75
α = 100

Fig. 7. Connectivity of legitimate sensors vs. the number of channels.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

F
ra

c
ti
o
n
 o

f
L
in

k
s

 T
h
a
t

A
re

 C
o
n
n
e
c
te

d
 a

n
d
 S

e
c
u

re

Number of Channels

α = 25
α = 50
α = 75
α = 100

Fig. 8. Secure connectivity of legitimate sensors vs. the number of channels.

In Figure 7 and Figure 8, we look more closely at the

affect of the number of channels on connectivity and security.

As expected, the connectivity of the network drops as the

number of channels increases as shown in Figure 7. The more

interesting result is in Figure 8, which shows the large benefit

obtained from channel diversity. In particular, by adding one

extra channel (i.e., c = 2), the protocol’s security is greatly

increased. We note that the benefit from using multiple channel

diversity is not possible in the Anderson’s work [7], which

only uses one channel to broadcast plaintext keys.

At this point, it is evident that setting c = 2 provides

the significant gain in link security (compared to c = 1)

while maintaining very high network connectivity (compared

to larger values of c). Thus, one may wonder if there is any

utility in setting c > 2. To answer this question, we refer

the reader to Figure 9, which shows the fraction of connected

links between legitimate sensors that are secure against the

colluding malicious devices as a function of the number of

such devices in the network. For brevity, we omit a graph

showing the connectivity of the protocol in these settings, but

note that the connectivity is greater that 90% in each of these

tests and for c ≤ 7, the connectivity is greater than 99% for

each test. Thus, all the values of c shown in Figure 9 provide

much higher connectivity than is seen in the results for some

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

F
ra

c
ti
o

n
 o

f
C

o
n

n
e

c
te

d
 L

in
k
s

 T
h

a
t
A

re
 S

e
c
u

re

Number of Colluding Attackers in the Network

c = 1
c = 2
c = 3
c = 7

c = 12

Fig. 9. Fraction of links between legitimate sensors that are secure vs. the
number of colluding attacker sensors.

other key predistribution schemes (e.g., [3], [6]).

Figure 9 shows that having more channels allows connected

links to be more secure against the colluding malicious de-

vices. In particular, for c = 2, when there are about 15

malicious devices in the network (30% of the sensors), some

of the links are no longer secure. For c = 3, about 25

malicious devices, 50% of the sensors, are necessary to start

compromising some of the legitimate links. For c = 7 and

c = 12, even with 40 malicious devices in the network,

virtually all of the links between legitimate sensors are secure.

We would like to emphasize that this last scenario corresponds

to 80% of the sensors in the network being malicious, which

is an extremely hostile setting. Recall that in Anderson’s

work [7], only up to about 3% of the sensors were malicious.

VII. INCREMENTAL SENSOR DEPLOYMENT

We assume that incremental sensor deployment is done in

a planned manner rather than a completely ad hoc fashion.

When the network is initially set up, the owner has accurate

knowledge of how many incremental deployments will occur

during the lifetime of a sensor as well as the maximum number

of new sensors that will be deployed each time. The new

sensors are deployed in batches rather than individually.

When new devices are added after the initial deployment,

sensors start another link key initialization procedure. A link

key initialization procedure after the initial deployment could

be triggered by one of several means. It could be at regular,

predetermined intervals when the incremental deployment

will happen. Alternatively, the new sensors could request

the initialization procedure on demand by broadcasting their

authenticated Bloom filters. Finally, a trusted source could

send packets to the sensors telling them when to start the

procedure. As mentioned earlier, sensors that already have

established link keys do not attempt to create a new link key

during subsequent link key initialization procedures.

Having discussed how the initialization, key discovery, and

key establishment phases can be triggered for incremental

deployment, we now propose a modification to the predeploy-

ment phase to allow authentication between existing and new

sensors as well as provide a new key set for existing sensors

in a space-efficient manner.

First, we focus on authentication between existing and new

sensors since it has a relatively simple solution. Because

incremental deployments are planned, it is assumed that the

network administrator plans no more than I incremental

deployment over the lifetime of a sensor. Furthermore, for

the i-th incremental deployment, the network owner knows

in advance that no more than Ni sensors will be deployed

at that time. Thus, whenever a sensor is deployed along with

its associated Merkle tree values, it is also loaded with the

roots of the next I Merkle trees that will be generated by

the trusted source for future deployments. The trusted source

is able to generate these I Merkle roots in advance since the

maximum number of sensors that will be associated with each

of these I Merkle trees is known in advance. This allows

an existing sensor to authenticate newly deployed sensors. To

allow newly deployed sensor to authenticate existing sensors,

the new sensors are loaded with the previous I − 1 Merkle

roots that were generated for prior deployments. Given that

sensors are loaded with these roots by the trusted source, they

can now authenticate the keys of sensors deployed over the

previous I − 1 generations or I generations in the future.

The second issue that needs to be addressed is how an

existing sensor can generate a new set of authenticatable keys

to broadcast in subsequent deployments. If a sensor continues

using the same α keys for every initialization phase, this gives

the attacker the chance to learn more of the sensor’s preloaded

keys. If the attacker records previously heard LREQ/LREP
handshakes, then it may be able to break existing link keys

as more of the preloaded keys are learned. Also, we seek to

avoid using α × I extra storage per sensor. Thus, we present

a scheme which only require α + 2I − 1 extra storage per

sensor. To do this, the Merkle tree generated in Section IV-B

is modified to be a two-level Merkle tree as follows.

Each sensor is again loaded with α unique, secret values.

However, rather than use these values directly as keys to

broadcast, they are used to create a hash chain to generate

key values. Specifically, each sensor is loaded with the secret

values sv1
1 , sv

1
2 , . . . , sv

1
α. The first set of keys a sensor broad-

casts is generated by applying a one-way hash function, Hkey ,

to each of these α secret values. Thus, the first key broadcast

when the sensor is initially deployed is Hkey(sv1
1) and the last

key broadcast during the sensor’s first initialization procedure

is Hkey(sv1
α). When a new batch of sensors is deployed,

the existing sensor must generate keys to use for its second

initialization procedure using a new set of secret values,

sv2
1 , sv

2
2 , . . . , sv2

α. This is done by applying a hash function

(not necessarily one-way), Hsv , to each of its secret values to

generate a new set of secret values. That is, sv2
j = Hsv(sv1

j)
for j = 1, . . . , α. The keys for the second initialization phase

are then created by applying the one-way hash function Hkey

to each of the sv2
j values. So, the first key broadcast for the

second initialization procedure is Hkey(sv2
1) and the last key

is Hkey(sv2
α). Figure 10 illustrates this process. Note that in

between initialization procedures, a sensor needs only store α

sv1
1 sv2

1 svI
1

K1
1 K2

1 KI
1

sv1
α sv2

α svI
α

K1
α K2

α KI
α

Ki
j = Hkey(svi

j)

svi+1
j = Hsv(sv

i
j)

Fig. 10. Key generation from secret values for incremental deployment. Ki
j

denotes the j-th key broadcast by a sensor in the i-th initialization phase.
Hkey is a one-way hash function and Hsv is a different hash function that
is not necessarily one-way.

secret values rather than α × I keys.

Now that we have specified a way for a trusted source to

generate each of a sensor’s I set of keys in advance while only

using α storage on the sensor, we must create the Merkle tree

used to authenticate the Bloom filter for each set of keys. To

do this, we extend the Merkle tree discussed in Section IV-B

by making each leaf node the root of another Merkle tree.10

Thus, each sensor in a given deployment generation has its

own unique second Merkle tree. This second Merkle tree has

I leaf nodes, one for each of the I authenticated Bloom filters

corresponding to its key sets. Each sensor is then loaded with

the 2I − 1 nodes from its second Merkle tree to authenticate

its Bloom filters along with the lg N nodes from the primary

Merkle tree to authenticate the root of its second Merkle tree.

An example of a two-level Merkle tree is shown in Fig-

ure 11. In this example, N = 4 and I = 4. Without loss of

generality, consider the second sensor in the deployment. It is

loaded with the four Bloom filters necessary to authenticate

its key sets, BF 2
1 , BF 2

2 , BF 2
3 , and BF 2

4 . The filters are then

hashed to form the leaves of its local Merkle tree. This local

Merkle tree is constructed as described in Section III-D to

generate root R2. This process is repeated for the three other

sensors as well. Using these four roots as leaves, the primary

Merkle tree is constructed with root R0. The second sensor is

then loaded with all the nodes from the subtree rooted at R2

as well as the lg N nodes from the primary tree necessary to

authenticate root R0. The sensor must be loaded with all of

the nodes rooted at R2 in order to ensure each of its I Bloom

filters can be authenticated.

VIII. DISCUSSION

We now discuss our protocol in relation to the key pre-

distribution method (e.g., [3]–[6]) as well as the approach of

Anderson et al. [7]. In some scenarios, these methods may be

10Though this structure is actually just one larger Merkle tree, we refer to
it as a two-level tree for ease of explanation.

A B

C D

R0

R1 R2 R3 R4

BF 2
1 BF 2

2 BF 2
3 BF 2

4

A = HM (R1||R2)

D = HM (BF 2
3 ||BF 2

4)

Fig. 11. Two-level Merkle tree for incremental deployment. In this example,
there are four sensors and four Bloom filters per sensor for the sets of keys
on that device. BF i

j refers to the Bloom filter for the keys of the i-th sensor

for the j-th initialization procedure.

preferable to our protocol. However, we believe properties of

our protocol make desirable it in many environments.

A. Comparison with Predistribution Schemes

We begin with some comparative advantages of our scheme:

• Network Connectivity: As shown in Section VI, our proto-

col is able to achieve close to 100% network connectivity

in many settings without using multipath reinforcement,

which requires a sensor pair to rely on other sensors to es-

tablish their link key. Allowing a sensor to communicate

with all of its neighbors is desirable from a performance

perspective since it gives more options for forwarding a

packet over a high quality link [24].

• Localizing Damage from Sensor Compromise: In the

other predistribution protocols, every time a sensor is

captured, the entire network becomes slightly less secure

since the attacker learns more about the network’s global

key pool. By contrast, our protocol localizes the damage

caused by compromised devices. If an attacker captures

many sensors in one region of the network, it does not

learn anything about the link keys being used in another

region of the network. This is because our protocol forms

link keys based on the key sets of nearby sensors rather

than from a network-wide key set.

Some comparative disadvantages of our scheme include:

• Multihop Key Sharing: In some applications (e.g., [25],

[26]), it may be desirable for key establishment to result

in shared keys between sensors that are multiple hops

away from each other. Predistribution schemes provide

this property since a sensor is as likely to share keys

with one-hop neighbors as it is to share keys with sensors

in other regions of the network. Our protocol is localized

and, therefore, only establishes keys between neighboring

sensors. As mentioned in Section IX, adapting our pro-

tocol to establish keys with sensors multiple hops away

is an area we will pursue for future work.

• Key Set Authentication Overhead and Vulnerability:

While key predistribution schemes do have significant

overhead to advertise their key sets, our protocol has the

added overhead of sending Merkle nodes to authenticate

the Bloom filter of the key set that will be broadcast by

a sensor. However, we note that other sensor protocols

have been proposed with require of O(lg N) overhead

associated with Merkle trees (e.g., [21]) and suggested

methods to improve this overhead if location informa-

tion is available. Additionally, our protocol introduces a

vulnerability that is not present in key predistribution

schemes whereby an attacker could generate arbitrary

keys that will be accepted as legitimate when broadcast.

However, we have discussed methods to address this

problem, such as increasing the Bloom filter size or

increasing the Merkle tree size, in Section IV-B.

B. Comparison with Anderson et al. [7]

Compared to Anderson’s protocol, our protocol is more

complex and has more overhead. Additionally, our protocol

requires the availability of multiple channels, which we do

not view as a disadvantage since current sensors [2] already

have this capability. However, by in large, we feel that our

protocol offers significant comparative advantages:

• Greatly Increased Security: Any adversary that compro-

mises our protocol would also be able to compromise

Anderson’s protocol [7]. However, there are many cases

where Anderson’s protocol is compromised but our pro-

tocol is not. Anderson’s protocol can provide security no

greater than the c = 1 case that is simulated in Section VI.

In the same section, we show that c > 1 significantly

improves resilience to colluding malicious sensors.

• Increased Link Authentication: From the description in

Section II, it is easy to see that Anderson’s scheme is

vulnerable to identity theft whereby a malicious device

claims a legitimate sensor’s ID and creates link keys

with neighbors using this ID. In our protocol, we preload

the sensors with data necessary to authenticate their

ID and key set by a trusted source. We note that the

authentication mechanisms that we use could be adapted

for use in Anderson’s protocol.

IX. FUTURE WORK

The first area of future work we plan to pursue is implement-

ing the protocol on sensor hardware to determine its viability

in a realistic setting, as indicated in Section III-A. Next, we

plan to augment the protocol to allow key establishment among

sensors multiple hops away from each other, as discussed in

Section VIII-A. Another area, as mentioned in Section III-B, is

to explore stronger threat models where an attacker coordinates

its channel switching protocol among multiple radios. Finally,

we will more thoroughly investigate the schemes an attacker

can use do compromise our authentication scheme described

in Section IV-B. In particular, it is interesting to consider the

optimal strategy an attacker can use to rebroadcast a legitimate

sensor’s keys and authentication data without being detected.

X. CONCLUSION

In this work, we have proposed a novel method of symmet-

ric key establishment for a sensor network that uses channel

diversity, as well as spatial diversity, to create link keys

for one-hop neighbors. Establishing such keys is important

because public keys are too computationally intensive for

many sensors. Sharing a symmetric key with neighbors allows

for secure aggregation as well as transmitting data used to

authenticate hash chains, for example.

Via analysis and simulation, we show that our protocol

performs very well in terms of network connectivity and

resilience to colluding malicious devices compared to previous

work. One result is that using even one extra channel for

broadcasting keys during the initialization phase significantly

improves security. From a numerical perspective, our simu-

lations demonstrate that our protocol can achieve over 90%

connectivity among neighboring sensors with link keys that are

uncompromised even when 80% of the devices in the network

are malicious and collude.

REFERENCES

[1] M. J. Miller and N. H. Vaidya, “Leveraging Channel Diversity for Key
Establishment in Wireless Sensor Networks,” in IEEE Infocom 2006,
April 2006.

[2] Crossbow Technology Inc., http://www.xbow.com.
[3] H. Chan, A. Perrig, and D. Song, “Random Key Predistribution Schemes

for Sensor Networks,” in IEEE Security and Privacy Symposium 2003,
May 2003.

[4] W. Du, J. Deng, Y. S. Han, and P. K. Varshney, “A Pairwise Key Pre-
distribution Scheme for Wireless Sensor Networks,” in ACM Computer

and Communications Security (CCS) 2003, October 2003.

[5] D. Liu and P. Ning, “Establishing Pairwise Keys in Distributed Sensor
Networks,” in ACM Computer and Communications Security (CCS)

2003, October 2003.
[6] L. Eschenauer and V. D. Gligor, “A Key-Management Scheme for

Distributed Sensor Networks,” in ACM Computer and Communications

Security (CCS) 2002, November 2002.
[7] R. Anderson, H. Chan, and A. Perrig, “Key Infection: Smart Trust for

Smart Dust,” in IEEE International Conference on Network Protocols

(ICNP) 2004, October 2004.
[8] A. Perrig, R. Canetti, J. D. Tygar, and D. Song, “Efficient and Secure

Source Authentication for Multicast,” in ISOC NDSS 2001, February
2001.

[9] A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and D. E. Culler, “SPINS:
Security Protocols for Sensor Networks,” Wireless Networks (WINET),
vol. 8, no. 5, September 2002.

[10] S. Zhu, S. Setia, and S. Jajodia, “LEAP: Efficient Security Mechanisms
for Large-Scale Distributed Sensor Networks,” in ACM Computer and

Communications Security (CCS) 2003, October 2003.
[11] S. Zhu, S. Xu, S. Setia, and S. Jajodia, “Establishing Pairwise Keys for

Secure Communication in Ad Hoc Networks: A Probabilistic Approach,”
in IEEE International Conference on Network Protocols (ICNP) 2003,
November 2003.

[12] J. Newsome, E. Shi, D. Song, and A. Perrig, “The Sybil Attack in Sensor
Networks: Analysis & Defenses,” in ACM ISPN 2004, April 2004.

[13] R. Blom, “Non-Public Key Distribution,” in Advances in Cryptology -

CRYPTO 1982, August 1982.
[14] C. Blundo, A. D. Santis, A. Herzberg, S. Kutten, U. Vaccaro, and

M. Yung, “Perfectly-Secure Key Distribution for Dynamic Conferences,”
in Advances in Cryptology - CRYPTO 1992, August 1992.

[15] IEEE 802.11, Wireless LAN Medium Access Control (MAC) and Physical

Layer (PHY) Specifications, 1999.

[16] A. D. Wood and J. A. Stankovic, “Denial of Service in Sensor Net-
works,” IEEE Computer, vol. 35, no. 10, October 2002.

[17] B. H. Bloom, “Space/Time Trade-offs in Hash Coding with Allowable
Errors,” Communications of the ACM, vol. 13, no. 7, July 1970.

[18] A. Broder and M. Mitzenmacher, “Network Applications of Bloom
Filters: A Survey,” Internet Mathematics, vol. 1, no. 4, pp. 485–509,
2004.

[19] G. Tsudik, “Message Authentication with One-Way Hash Functions,” in
IEEE Infocom 1992, May 1992.

[20] R. C. Merkle, “A Certified Digital Signature,” in Advances in Cryptology

- CRYPTO 1989, August 1989.
[21] W. Du, R. Wang, and P. Ning, “An Efficient Scheme for Authenticating

Public Keys in Sensor Networks,” in ACM MobiHoc 2005, May 2005.

[22] T. H. Cormen, C. E. Leiserson, , R. L. Rivest, and C. Stein, Introduction

to Algorithms, 2nd ed. The MIT Press, 2001.

[23] ns-2 – The Network Simulator, http://www.isi.edu/nsnam/
ns.

[24] A. Cerpa, J. L. Wong, M. Potkonjak, and D. Estrin, “Temporal Properties
of Low Power Wireless Links: Modeling and Implications on Multi-Hop
Routing,” in ACM MobiHoc 2005, May 2005.

[25] S. Zhu, S. Setia, S. Jajodia, and P. Ning, “An Interleaved Hop-by-
Hop Authentication Scheme for Filtering Injected False Data in Sensor
Networks,” in IEEE Security and Privacy Symposium 2004, May 2004.

[26] F. Ye, H. Luo, S. Lu, and L. Zhang, “Statistical En-route Filtering of
Injected False Data in Sensor Networks,” in IEEE Infocom 2004, March
2004.

APPENDIX I

CHERNOFF BOUNDS

This section provides a brief review of Chernoff bounds.

More detailed information is available from many sources

(e.g., [22]). As denoted in Table II, LB(µ) refers to the lower

bound on the sum of the Bernoulli random variables, where

µ is the mean of the sum.

Lower Chernoff bounds give the following inequality:

Pr[X < (1 − δ)µ] < exp

(

−
µδ2

2

)

when 0 ≤ δ < 1 (10)

where LB(µ) = (1 − δ)µ and the right-hand side is the

probability with which this bound is violated.

To demonstrate the application of this bound, we use

LB(αph) from Section V (α and ph are defined in Table I

and Table II, respectively) as an example. We set δ from

Equation 10 to be:

δ =

√

2β lnα

αph

(11)

where β controls the probability that the bound is violated (i.e.,

influences how “high” the high probability is), as discussed

below. Thus, using the δ from Equation 11, we get:

LB(αph) = (1 − δ)αph =

(

1 −

√

2β lnα

αph

)

αph (12)

and to avoid violating the condition that 0 ≤ δ < 1 from

Equation 10, we must enforce that:

ph >
2β lnα

α
(13)

Using Equation 10 and δ from Equation 11, this gives us:

Pr[X < LB(αph)] <
1

αβ
(14)

which says that the bound is tighter for larger values of α. For

our numerical results, we use β = 1.

The upper Chernoff bound gives the following inequalities:

Pr[X > (1 + δ)µ] <















exp
(

−µδ2

3

)

when δ < 1

exp
(

−µδ2

4

)

when δ < 2e − 1

2−(1+δ)µ when δ > 2e − 1
(15)

Using the tightest bound from Equation 15 (i.e., δ < 1),

UB(duvwαph) from Table II is obtained as:

UB(duvwαph) = (1 + δ)duvwαph

=

(

1 +

√

3β ln(duvwα)

duvwαph

)

duvwαph

(16)

and to avoid violating the condition that δ < 1 from Equa-

tion 15, we must enforce that:

ph >
3β ln(dcα)

dcα
(17)

Using Equation 15 and the bound from Equation 16, we get:

Pr[X > UB(duvwαph)] <
1

(duvwα)β
(18)

and, again, we use β = 1 in our numerical results.

