
Parametric Polymorphism for
Java: A Reflective Approach

By Jose H. Solorzano
and Suad Alagic
Presented by Matt Miller
February 20, 2003

Outline

Motivation
Key Contributions
Background
– Parametric Polymorphism
– Java Core Reflection

Survey of Approaches
Comments
Conclusions

Motivation

Java’s current “parametric polymorphism” is
to make all the parameters a generic
superclass (e.g., Object)
This requires explicit downcasts at run-time
when accessing objects. The downcast
hinders performance and requires an extra
burden on the programmer.
Previous approaches do not consider the
reflective properties of objects

Key Contributions

Provides correct reflective solutions for
implementing parametric polymorphism
Develops compact representation of run-time
class objects
Proposes a technique for handling static
variables with parametric polymorphism
Gives overview and comparison of existing
approaches

Parametric Polymorphism Categories

Parametric Polymorphism
– A generic class has formal type parameters rather

than actual types
Bounded
– The formal type parameter is specified to have an

upper bound other than Object
F-Bounded
– The upper bound is recursively specified
– Useful when binary operations are used on data

Parametric Polymorphism Category
Examples

Java Core Reflection (JCR)

Applications can acquire run-time information
about the class of an object
Allows discovery of methods which can then
be invoked
Complete reflection should allow run-time
queries for the generic classes and classes
instantiated from generics

Evaluation of Approaches

Is the source code of generic classes
required during compiling
How much memory do class objects use
How much indirection is necessary to access
methods
What reflective information is available
How are static variables handled

Approach 1:
Textual Substitution (TS)

Similar to C++ templates
Requires source code of generic class at compile-
time for instantiated classes. Does a macro
expansion.
Complete type-checking is only done when an
instantiation of the generic class is encountered
Allows flexibility because classes do not have to
explicitly declare the implementation of an interface

Approach 2:
Homogenous
Translation (HM)

Compiler translates
instantiations to upper bound.
Thus, run-time checks
guaranteed to be correct.
Only one class file and object
per generic
Only requires compiler changes
Reflection is incorrect

– Classes will be generics
– Parameter types will be bounds

Potential security hazard

Original Code

Compiler Translation

HM Security Hazard

interface Channel {…}
class Collection<T implements Channel> {

… add(T anElement); …
}
class SecureChannel implements Channel {…}
class InsecureChannel implements Channel {…}
…
Collection<SecureChannel> c = new Collection<SecureChannel>;
persistentStore(“Collection1”, c);
…
Collection c2 = (Collection) persistentGet(“Collection1”);

// add method takes type Channel
c2.add(new InsecureChannel()); // No errors

Approach 3:
Heterogeneous
Translation (HT)

Separate class file and
object created for each new
instantiation
Run-time info for instantiated
classes is correct
May produce many nearly
identical classes
No run-time information
available for generic
classes. They are never
loaded.

Original Code

Compiler Translation

Approach 4:
Load-Time Instantiation (LI)

Extend class loader
produce heterogeneous
class objects from
homogenous class file
Improves HT by not
producing redundant
class files
Same reflective
capabilities as HT

Collection<Employee> Collection<Student>

Methods and Fields
With Actual Types

Proposed Approach 1:
Inheritance and Alias Classes (IH & AC)

Similar to LI except
instantiated classes are
nearly empty and access
code through generic class
May require extra level of
lookup for methods
Parameters are reported as
bound type
Alias is a new relationship to
correctly report the
superclass of an object

Collection<Employee> Collection<Student>

Collection

Ty
pe

s
w

ith

Bo
un

ds

Proposed Approach 2:
Extended Java Core Reflection (RF)

Requires modifications to JVM, class loader
and JCR classes
Add class types GENERIC, INSTANTIATED
and FORMAL
Static variables can be stored in generic
class or instantiated class
Correct JCR available for each class

RF Illustration

INSTANTIATED Class

GENERIC Class

RF Changes to JCR

Standard JCR Methods

INSTANTIATED Methods

GENERIC Methods

FORMAL TYPE Methods

Proposed Approach 3:
Generic Code Sharing (RS)

More efficient access to reflective information than
RF
No formal parameter classes
Instantiated classes have actual method signatures
which refer to the same generic code
Reflection is less correct. Bound types are reported
for generic classes instead of formal parameters.

Summary of Approaches

HM is best for memory usage. IH/AC, RF and RS are better
than HT/LI.
IH/AC and RF require extra level of indirection from instantiated
class to method and field signatures.
Reflective Capabilities

– HM is incorrect. Objects of different type instantiations cannot be
dynamically distinguished. Multiple dispatch not possible.

– HT/LI is more correct. Provide types of instantiated classes and
correct parameter types for methods and fields.

– RF is most correct. Gives actual types for instantiated classes,
formal types for generics and bounds for formal parameters.

– RS is slightly less correct. Generics only provide bound
information, not formal type parameters.

Comments

No performance evaluation of
implementations
Primitives still require extra overhead of
wrapper classes
Could lead to complex class hierarchy in
large systems with many generic types

Conclusions

Demonstrates how parametric polymorphism
could be added to Java in a way that is
compact and correct with respect to JCR
Allows static variables per generic or per
instantiation
Surveys and compares existing approaches
to the problem

Bonus Slides

Persistent Store

Emerging technology for Java allows objects to
outlive the current application
All objects referenced within a stored object also
become persistent. This includes an implicit
reference to the Class object.
Need reflection to type check when retrieving
persistent object
Should limit redundancy among instantiated classes

Persistent Store vs. Serialization

Serialization: Creates a series of bytes to
represent an object and all objects reachable
from it
Successive retrievals of a serialized object
will have a different identity.
Serialization suffers from “big inhale”. That
is, one must wait for the entire byte stream to
be loaded even if only a small portion of the
data is needed.

Multiple Dispatch

Single dispatch (e.g., Java)
chooses the method based
on the run-time type of caller
and the static type of the
input parameters
Multiple dispatch would
allow the choice of the
method to also be a function
of the input parameter run-
time types

Table 8.1

Detailed RF Changes to JCR

Issues with Parametric Polymorphism
in Java

Static Fields
Explicit interface implementation versus
equivalent class structure
Constructors of subtypes may differ from
those of the supertype
Duplicate methods after instantiation
Subtyping semantics

Subtype Constructor Problem

Subtype of person may
have no constructor
which matches
signature
Or, subtype may match
either of the signatures

Duplicate Method Problem

class Collection<T> {
boolean add(T element);
boolean add(Employee element);

}

Collection<Employee> c;

Subtyping Semantic Problem

class Collection<A> {…}
class Y extends X {…}
Collection<Y> y = new Collection<Y>;
Collection<X> x = y; // Compile time error
x.insert(new X()); // Type violation

But, this is legal in Java:
Y[] y = new Y[10];
X[] x = y;
x[0] = new X();

