Parametric Polymorphism for
Java: A Reflective Approach

By Jose H. Solorzano

and Suad Alagic

Presented by Matt Miller
February 20, 2003

Outline
« /07

e Motivation
e Key Contributions

e Background
-~ Parametric Polymorphism
— Java Core Reflection

e Survey of Approaches
e Comments
e Conclusions

Motivation
«]

e Java’'s current “parametric polymorphism” is
to make all the parameters a generic
superclass (e.g., Object)

e This requires explicit downcasts at run-time
when accessing objects. The downcast
hinders performance and requires an extra
burden on the programmer.

e Previous approaches do not consider the
reflective properties of objects

Key Contributions
-

e Provides correct reflective solutions for
iImplementing parametric polymorphism

e Develops compact representation of run-time
class objects

e Proposes a technique for handling static
variables with parametric polymorphism

e Gives overview and comparison of existing
approaches

Parametric Polymorphism Categories
c- |

e Parametric Polymorphism

- A generic class has formal type parameters rather
than actual types

e Bounded

- The formal type parameter is specified to have an
upper bound other than Object

e F-Bounded

- The upper bound is recursively specified
- Useful when binary operations are used on data

Parametric Polymorphism Category
Examples

Illustration 1.1 (Generic Class)

public class Collection<T>

{

}

public boolean exists (T aElement);

public void
public void

addElement {T aElement);
removeElement (T aElement);

Illustration 1.2 (Bounded Type Quantification)

public interface Ord

{
}

public boolean lessThan (Object albj};

public class OrdCollection<T implements Ord>
extends Collection<T>

{ -

}

Illustration 1.3 (F-bounded Polymorphism)

public interface Ordered<T>
{

}

public boolean lessThan (T aObject);

public class OrderedCollection<T implements Ordered<T>>
extends Collection<T>

{ ..

k

Java Core Reflection (JCR)
-

e Applications can acquire run-time information
about the class of an object

e Allows discovery of methods which can then
be invoked

e Complete reflection should allow run-time
qgueries for the generic classes and classes
instantiated from generics

Evaluation of Approaches
c

e Is the source code of generic classes
required during compiling

e How much memory do class objects use

e How much indirection is necessary to access
methods

e \What reflective information is available
e How are static variables handled

Approach 1:
Textual Substitution (TS)

e Similar to C++ templates

e Requires source code of generic class at compile-
time for instantiated classes. Does a macro
expansion.

e Complete type-checking is only done when an
instantiation of the generic class is encountered

e Allows flexibility because classes do not have to
explicitly declare the implementation of an interface

Approach 2:
Homogenous
Translation (HM)

e Compiler translates
instantiations to upper bound.
Thus, run-time checks
guaranteed to be correct.

e Only one class file and object
per generic
Only requires compiler changes
e Reflection is incorrect
— Classes will be generics
- Parameter types will be bounds

e Potential security hazard

class Pair<elem> {
elem x; elem vy;
Pair (elem x, elem y) {this.x = x; this.y = y;}
void swap () {elemt =x; x =y; y = t;}

}

Pair<String> p = new Pair("world!", "Hello,");

p.swap();
System.out.printIn(p.x + p.y);

Original Code

class Pair {
Object x; Object v;
Pair (Object x, Object y) {this.x = x; this.y = y;}
void swap () {Object t =x; x = y; y = t;}

Pair p = new Pair((Object)” world!", (Object)" Hello,");

p.swap();
System.out.printIn((String)p.x + (String)p.y);

Compiler Translation

HM Security Hazard
-

interface Channel {...}
class Collection<T implements Channel> {
... add(T anElement); ...
}
class SecureChannel implements Channel {...}
class InsecureChannel implements Channel {...}

Collection<SecureChannel> ¢ = new Collection<SecureChannel>;
persistentStore(“Collection1”, c);

Collection c2 = (Collection) persistentGet(“Collection1”);
// add method takes type Channel
c2.add(new InsecureChannel()); // No errors

class Pair<elem> {
elem x; elem vy;

ApproaCh 3: Pair (elem x, elem y) {this.x = x; this.y = y;}
Heterogeneous void swap () {elemt =x; x =y; y = t;}

. }
Translation (HT)
Pair<String> p = new Pair("world!", "Hello,");

G, -)

_ System.out.println(p.x + p.y);
e Separate class file and -
object created for each new Original Code
instantiation

class Pair_String {

e Run-time info for instantiated |5, ;.5 sting v:

classes is correct Pair_String (String x, String y) {this.x = x; this.y = y;}
void swap () {Stringt =x; x =vy;y = t;}
e May produce many nearly }
identical classes Pair_String p = new Pair_String(" world!”, "Hello,");

p.swap(); System.out.printin(p.x + p.y);

e No run-time information _ _
available for generic Compiler Translation

classes. They are never
loaded.

Approach 4:
Load-Time Instantiation (LI)

e Extend class loader Collection<Employee> Collection<Student>

o

Collection<Employee> Collection<Student> 1

produce heterogeneous

I i al ith al
class objects from g;lgllgrcgr;ggm wih el e
paameser _ formel pusameter

form:

homogenous class file

e Improves HT by not
producing redundant

Class
class files AaRE
: Methods and Fields

e Same reflective With Actual Types
capabilitiesas HT ...} . S

Collection.class

Proposed Approach 1:
Inheritance and Alias Classes (IH & AC)

e Similar to LI except - T
instantiated classes are
nearly empty and access
code through generic class

e May require extra level of
lookup for methods

e Parameters are reported as

-
sk

Types with
Bounds

i

U
[
]
1
]
]
|

Collwdmﬂuﬂela-)

Collection<Employee>{ Class \ Collection<Student>

bound type Loader

e Alias is a new relationship to
correctly report the A
superclass of an object e

Collection.class

Proposed Approach 2:
Extended Java Core Reflection (RF)

e Requires modifications to JVM, class loader
and JCR classes

e Add class types GENERIC, INSTANTIATED
and FORMAL

e Static variables can be stored in generic
class or instantiated class

e Correct JCR available for each class

RF lllustration

GENERIC Class

/ %mﬁlﬂmmﬁ

A A
= Sysieicn

extends 1 . .
5 instantisies

' mmdc“"’“‘"““ﬁmphm:

Ry

e

INSTANTIATED Cla

i
implemenis
Lﬁwi"} i code
; i | B
e | [
T : W {Iagf'\r
b

OrderedCollection.class

RF Changes to JCR
-

Illustration 8.1 (Proposed Erxtensions to JCR)

public class Class

{
// Usual methods:
public boolean isInterface();

public boolean isAbstract();
Pablic String gotNemeO): Standard JCR Methods
public Method getDeclaredMethod (String aName,

Class[] aParamTypes);

// RF methods for instantiated classes:

public Class getGeneric(); INSTANTIATED Methods

public Class[] getActualParameters();

// RF methods for formal type parameters:

public Class getUpperBound(); FORMAL TYPE Methods

public int getPosition0fFormal();

// RF methods for generic classes:

public Class[] getFormalParameters(); GENERIC Methods

Class instantiate (Class[] aArg);

Proposed Approach 3:
Generic Code Sharing (RS)

More efficient access to reflective information than
RF

No formal parameter classes

Instantiated classes have actual method signatures
which refer to the same generic code

Reflection is less correct. Bound types are reported
for generic classes instead of formal parameters.

Summary of Approaches
S

HM is best for memory usage. IH/AC, RF and RS are better
than HT/LI.

IH/AC and RF require extra level of indirection from instantiated
class to method and field signatures.
Reflective Capabilities

- HMis incorrect. Objects of different type instantiations cannot be
dynamically distinguished. Multiple dispatch not possible.

— HT/LIl is more correct. Provide types of instantiated classes and
correct parameter types for methods and fields.

- RF is most correct. Gives actual types for instantiated classes,
formal types for generics and bounds for formal parameters.

- RS is slightly less correct. Generics only provide bound
information, not formal type parameters.

Comments
« 000077

e No performance evaluation of
implementations

e Primitives still require extra overhead of
wrapper classes

e Could lead to complex class hierarchy in
large systems with many generic types

Conclusions

e Demonstrates how parametric polymorphism
could be added to Java in a way that is
compact and correct with respect to JCR

e Allows static variables per generic or per
iInstantiation

e Surveys and compares existing approaches
to the problem

Bonus Slides

Persistent Store
« /07

e Emerging technology for Java allows objects to
outlive the current application

e All objects referenced within a stored object also
become persistent. This includes an implicit
reference to the Class object.

e Need reflection to type check when retrieving
persistent object

e Should limit redundancy among instantiated classes

Persistent Store vs. Serialization
« /07

e Serialization: Creates a series of bytes to
represent an object and all objects reachable
from it

e Successive retrievals of a serialized object
will have a different identity.

e Serialization suffers from “big inhale™. That
IS, one must wait for the entire byte stream to
be loaded even if only a small portion of the
data is needed.

Multiple Dispatch
-

e 3Single dispatch (e.g., Java) public cass Shape

public boolean intersect(Shape s) { Rectangle rl, r2;

JREx] Shape s1, 52;
chooses the method based } boolean b1, b2, b3, bd;
. 3 /* End Class Shape */ f; = EZW Eng::((f;w;))}
12 = new *EES)
O n th e ru n_tl me type Of Cal Ie r Public class Rectangle extends Shape { :; = Fé;
. public boolean intersect(Rectangle r) { =ley Rectangle.intersect()
o B1 = rl.intersect(r2);
and the static type of the o B o e randi)
. ® * B3 = sl.intersect(r2); Shape.intersect()
IN pUt param eters /7 End Class Rectangle B4 = slintersect(s2); ~ Shape.intersect()
e Multiple dispatch would
a | IOW th e ChOICe Of the - Ev?]r&sélgiias&clrt]\t,ggsseg:r(gZ) Public class Circle extends Shape {
Shape. public boolean intersection(Shape s) {

methOd tO aISO be a fu nCtlon = If at run time both s1 }I* Code for a circle against a shape */

and s2 are of type

Of the IN put pa rameter run- Circle, then the first and pubiic boolean intersect(Shape@Rectangle r) {
. third Oflthets)le mlethOdS_th /* Efficient code against a Rectangle */
are applicable along wi }
tl me types Shapeg default
“intersect” method. public boolean intersect(Shape@Circle ¢) {

s The third one is most /* Efficient code against a Circle */

specific so it is executed)

Table 8.1
« /7

| Abbrev. || Description Source | Memory | Perform. | Actuals | Mult. disp. | Reflection |
TS Textual Substitution T 4+ + + ++
HM Homogeneous T + [¥4+ 4
HT Heterogeneous + ++ + + e
LI Load-time instantiation + o + + ++
[H Inst. by inheritance + ++ -+ + -+
AC Inst. by class aliasing + ++ + + +
RF Reflect. technique 1 + ++ + ++ + + + ++
RS Reflect. technique 2 + ++ | _++ ++ + ++ +

Table 8.1: Evaluation of implementation techniques for parametric polymorphism.

Detailed RF Changes to JCR

Illustration 8.1 (Proposed Eztensions to JCR)

public class Class
)
// Usual methods:
public boolean isInterface();
public boolean isAbstract();
public String getName();
public Method getDeclaredMethod (String aName,
Class[] aParamTypes);

// RF general methods:

public boolean isGeneric();

public boolean isInstantiated();
public boolean isFormalParameter();

// RF methods for instantiated classes:
public Class getGeneric();
public Class[] getActualParameters();

// RF methods for formal type parameters:
public Class getUpperBound();
public int getPosition0fFormal();

// RF methods for generic classes:
public Class[] getFormalParameters();
Class instantiate (Class[] ahrg);

Illustration 8.2 (Frtension to class Method)

public class Method
{
// Usual methods:
public String getName();
public Class getReturnType();
public Object invoke (Dbject aRecv, Class[] aParams);
/1 [...1 New RF method:
public Method getActualSignature (Class{] aAct);

Illustration 8.3 (Eztension to a method of Class)

public class Class
. EEra
public Method getDeclaredMethod (String aName,
Class[] aParamTypes)
{
if (isInstantiated())
{ // Assume single dispatch
Method pMethod = getGeneric().
getDeclaredMethod{aName, aParameters);
return pMethod.getActualSignature (
getActualParameters());
}
else
{ ... // Other cases
}
}
}

Issues with Parametric Polymorphism
in Java

«
e Static Fields

e Explicit interface implementation versus
equivalent class structure

e Constructors of subtypes may differ from
those of the supertype

e Duplicate methods after instantiation
e Subtyping semantics

Subtype Constructor Problem
.

e Subtype of person may
have no constructor
which matches

Illustration 5.1 (Constructors of Formal Type Parameters)

signature
public class PersonCollection<T extends Person>
{...
e Or, subtype may match T vag—
{
[] u . . 4 L]
either of the signatures T o
T person2 = new T(‘‘Smith’’, 50000);
}

}

Duplicate Method Problem

class Collection<T> {
boolean add(T element);
boolean add(Employee element);

J

Collection<Employee> c;

Subtyping Semantic Problem
-

class Collection<A> {...}

class Y extends X {...}

Collection<Y> y = new Collection<Y>;
Collection<X> x =vy; // Compile time error
x.insert(new X()); // Type violation

But, this is legal in Java:
Y[]y = new Y[10];
X[Ix=y;

X[0] = new X();

