ENERGY EFFICIENCY AND SECURITY
FOR MULTIHOP WIRELESS NETWORKS

BY

MATTHEW JEFFERSON MILLER

B.S., Clemson University, 2001
M.S., University of Illinois at Urbana-Champaign, 2003

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science
in the Graduate College of the
University of Illinois at Urbana-Champaign, 2006

Urbana, Illinois

ENERGY EFFICIENCY AND SECURITY
FOR MULTIHOP WIRELESS NETWORKS

Matthew Jefferson Miller, Ph.D.
Department of Computer Science
University of Illinois at Urbana-Champaign, 2006
Nitin H. Vaidya, Adviser

As wireless devices are more widely used, it is clear that security and energy consumption are major
concerns. From a energy perspective, it is increasingly evident that marginal gains in battery energy density
necessitate energy efficient protocols. In the security realm, growth in the value and amount of information
being transmitted over wireless channels demands confidentiality and integrity.

In the energy efficiency domain, this dissertation focuses on the wireless interface since this has been
identified as a major source of energy consumption on devices such as sensors. Within this domain, many
previous approaches propose using fixed listening and sleeping intervals regardless of the network conditions.
We propose adaptive listening and sleeping techniques where these intervals are adjusted based on obser-
vations of traffic patterns and channel state. Another shortcoming of many power save protocols is that
they wastefully listen for entire packets as a wake-up signal. In this dissertation, we propose carrier sensing
techniques that reduce the cost of checking for such signals.

In the security domain, this dissertation looks at key distribution in wireless sensor networks. Because
such devices may face severe resource constraints, symmetric keys are used since public-key cryptography may
be infeasible. Previous approaches to this problem include key predistribution, and broadcasting plaintext
keys, under the assumption that few eavesdroppers are present during key discovery. However, drawbacks
to these approaches include poor secure connectivity or degraded security when several eavesdroppers are in
the network. Our work exploits the underlying wireless channel diversity to address the problem. In doing
so, our key distribution protocol effectively addresses the drawbacks of previous techniques.

The major contributions of this dissertation are: (1) leveraging multiple channels to improve the con-
nectivity and security of key distribution, (2) proposing adaptive power save mechanisms to reduce energy
consumption, and (3) improving power save protocols by using carrier sensing to enhance their energy effi-

ciency.

Abstract

As wireless devices are more widely used, it is clear that security and energy consumption are major concerns.
From a energy perspective, it is increasingly evident that marginal gains in battery energy density necessitate
energy efficient protocols. In the security realm, growth in the value and amount of information being
transmitted over wireless channels demands confidentiality and integrity.

In the energy efficiency domain, this dissertation focuses on the wireless interface since this has been
identified as a major source of energy consumption on devices such as sensors. Within this domain, many
previous approaches propose using fixed listening and sleeping intervals regardless of the network conditions.
We propose adaptive listening and sleeping techniques where these intervals are adjusted based on obser-
vations of traffic patterns and channel state. Another shortcoming of many power save protocols is that
they wastefully listen for entire packets as a wake-up signal. In this dissertation, we propose carrier sensing
techniques that reduce the cost of checking for such signals.

In the security domain, this dissertation looks at key distribution in wireless sensor networks. Because
such devices may face severe resource constraints, symmetric keys are used since public-key cryptography may
be infeasible. Previous approaches to this problem include key predistribution, and broadcasting plaintext
keys, under the assumption that few eavesdroppers are present during key discovery. However, drawbacks
to these approaches include poor secure connectivity or degraded security when several eavesdroppers are in
the network. Our work exploits the underlying wireless channel diversity to address the problem. In doing
so, our key distribution protocol effectively addresses the drawbacks of previous techniques.

The major contributions of this dissertation are: (1) leveraging multiple channels to improve the con-
nectivity and security of key distribution, (2) proposing adaptive power save mechanisms to reduce energy
consumption, and (3) improving power save protocols by using carrier sensing to enhance their energy effi-

ciency.

iii

To Leigh Ann, Dad, and Mom

iv

Acknowledgments

There are three people without whom I am certain I never would have reached this achievement. They are
my wife, Leigh Ann, my father, David, and my mother, Charlene. Getting a Ph.D. is quite a roller coaster
ride and I cannot imagine a better partner to have along for the journey than Leigh Ann. Having her to
celebrate in my accomplishments, console me in my disappointments, and always have complete confidence
in me is one of God’s greatest blessings in my life. Ever since I was young, my dad has taken a sincere
interest in everything I do and always encouraged me to be curious. My mom has kept me in her daily
prayers since before I was born and always been there to comfort me.

In addition, many others have indirectly helped me make it to this point. For brevity, I will mention
only a few by name. My brother, Eric, and I have always enjoyed a special bond and many good times. My
grandparents, Charles and Ruth Hughes, have served as wonderful role models to me. I am forever in debt
to Bill and Carol Menees for their hospitality to allow me to finish high school in South Carolina. Finally, I
thank my in-laws, John, Judy, and Jared Buchanan, for letting me take their little girl all the way to Illinois
in the pursuit of our dreams.

I thank all of my school teachers for giving me a solid educational foundation. I hope that an accomplish-
ment such as this by a former student makes your efforts seem worthwhile. I would also like to acknowledge
Dan Stanzione, Roy Pargas, and Walter Ligon for giving me an opportunity to participate in research as an
undergraduate at Clemson University.

I have benefited greatly from working with a wonderful research group and would like to thank my
adviser, Nitin Vaidya. Aside from mentoring me on my research, I appreciate his calm demeanor and ability
to quickly assess research problems and solutions. I also thank my dissertation committee for their helpful
discussions and Indranil Gupta, in particular, for his effort to help convert our class project into a conference
publication. I would also like to acknowledge Cigdem Sengul who co-authored the work in Chapter 5 [1].

Finally, some financial support for this research was provided by National Defense Science and Engineering

Graduate (NDSEG) and National Science Foundation (NSF) Fellowships.

Table of Contents

Chapter 1 Introduction @ @ i i i i i i i it it et e it e e e e et e e e 1
1.1 Main Contributions L 5
1.2 Dissertation Outline e 5

Chapter 2 Related Work 0 0 i i i e et e 7
2.1 Power Save Protocols. 7

2.1.1 Taxonomy v v vt e e e e e e e e e e e 7
2.1.2 Carrier Sense Techniques e 13
2.1.3 Adaptive Energy-Saving Techniques 13
2.2 Efficient Broadcast Propagation oo 16
2.3 Symmetric Key Distribution oo 16

Chapter 3 Carrier Sensing for Energy-Efficient Signaling 20

3.1 CQarrier Sensing for In-Band Protocolso oo 20
3.1.1 Protocol Description 21
3.1.2 Comparison with Preamble Sampling 24
3.1.3 Simulation Results 25

3.2 Carrier Sensing for Out-of-Band protocolso oo 25
3.2.1 Protocol Descriptions 25
3.2.2 STEM Description [2,3] (Figure 3.2) 27
3.2.3 STEM-BT Description [3] (Figure 3.3) i 28
3.2.4 Discussion of STEM and STEM-BT 29
3.2.5 Proposed Protocol Description: STEM-H (Figure 3.4) 29
3.2.6 Proposed Protocol Description: STEM-BT2 (Figure 3.5) 31
3.2.7 Parameter Values 32
3.2.8 Simulation Results 35

3.3 SUmMIMATY e e e 43

Chapter 4 Adaptive Energy-Saving Protocols, 44

4.1 Dynamic Advertisement Windows 44
4.1.1 Protocol Description e 45
4.1.2 Design Discussion L e 48
4.1.3 Simulation Results 51

4.2 Multi-Level Power Save Routing L 57
4.2.1 Link Layer Protocol Description 58
4.2.2 Routing Protocol Description 60
4.2.3 Design Discussion e 65
4.2.4 Simulation Results 67
4.2.5 Extensionso e 72

4.3 SUIMMATY . . . o o v o e e e e e e 75

vi

Chapter 5 Adaptive Broadcast Dissemination Framework 76

5.1 Protocol Description L e 76
5.1.1 Design Discussion L e 78

5.2 Simulation Results 79
5.2.1 mns-2 Simulations 80

5.3 TImplementation L e 83
5.3.1 Protocol Extension 84

5.3.2 Design L 84

5.3.3 Results e 89

5.3.4 Lessons Learned 96

B.4 SUMIMNATY . .« o v vt e e e e e e e e e e e e e e 99
Chapter 6 Leveraging Channel Diversity for Secure Key Distribution 100
6.1 Background 102
6.1.1 System Model e 102

6.1.2 Threat Model e 102

6.1.3 Bloom Filters [4] 103

6.1.4 Merkle Trees [5] o o o 104

6.2 Protocol Description L 105
6.2.1 OVerview e 105

6.2.2 Predeployment Phase 106

6.2.3 Imitialization Phase 108

6.2.4 Key Discovery Phase 109

6.2.5 Key Establishment Phase o 111

6.2.6 Neighbor Address Authentication 111

6.3 Analysis e e 113
6.4 Simulation Results 118
6.5 Discussion Lo e e 123
6.5.1 Comparison with Predistribution Schemes 124

6.5.2 Comparison with Andersonet al. [6] 125

6.6 Extensions. e e 126
6.6.1 Incremental Deployment 126

6.6.2 Path Diversity 128

6.7 SUMATY e e e e 133
Chapter 7 Conclusion 0 i i i i i i i ittt ittt e e e e e et 134
7.1 Future Work e e 135
Appendix A Carrier Sensing Modifications to Handle Synchronization Errors 136
Appendix B Minimum Energy Routing Proof., 140
B.1 Steiner Tree Problem (ST) o 140
B.2 Steiner Tree With Unit Edge Weights Problem (ST-UE) 140
B.3 Steiner Tree on Bidirected Graphs (ST-BG)« . oo i vt i i 141
B.4 Minimum Energy Routing for Multilevel Power Save (MER) 141
Appendix C PBBF Interfaces and Packet Formats in TinyOS 144
C.1 Packet Formats 144
C.1.1 SimplePbbfMsg e 144

C.1.2 PbbfStatsMsg 145

C.1.3 UARTMSE . . . o o e e e e e e e e e e 145

C.2 Interfaces 145
C.2.1 PBBF Interface e 145

C.2.2 Broadcast Send Interface L L 146

vii

C.2.3 Stats Handling Interface
C.2.4 Control Packet Handling Interface
References o o i i i i i i i it e
Author’s Biography 0 i i i i e

viii

Chapter 1

Introduction

The use of wireless networks in our society is increasing at a rapid pace. The number of 802.11 [7] hotspots
is expected to have a 31.5% compound annual growth rate during a four year period [8]. RFID production
is projected to increase by a factor of 25 in the next four years [9]. During a five year period, the number
of Bluetooth devices expects a 60% compound annual growth rate [10]. TinyOS [11], a popular open-source
sensor operating system, typically has between 50 and 200 downloads per day [12].

Most existing wireless networks are single hop which means that devices communicating wirelessly are
within range of each other. By contrast, multihop wireless networks may transmit packets over multiple
wireless hops before reaching their final destination. While single-hop wireless networks are widespread,

multihop networking offers several additional advantages:

e Cost of Deployment: Installing network wiring can be expensive. Their is a labor cost that often
includes burying or running wires through walls, floors, or the ground. In addition, there may be
costs associated with considerations such as ownership of the property across which the wires need
laid, preservation of historical structures, and conservation of environmentally protected areas. By
contrast, wireless infrastructure can be cheaper and less invasive to deploy. Off-the-shelf wireless
routers can be used to extend the infrastructure hundreds of meters. Mesh networking [13] is an area

of research that aims to do just that.

e Rapid Deployment: When the wire infrastructure is destroyed or unavailable, wireless networks can be
used to quickly extend the reach of the wired infrastructure to areas of need. An example is military
applications where a temporary network must be set up quickly. Another illustration is improving
network coverage in a disaster area. This was attempted by some wireless enthusiasts in the wake of
hurricane Katrina [14]. Vehicular [15,16] and underwater networks [17] are two more applications where

wired communication may be impossible and, hence, are conducive to multihop wireless networking.

Sensors [18] are another example that may benefit from quickly deployed networks that can monitor

the environment and/or detect events.

o Capacity Improvement: In a single-hop network, the capacity available to each node will decrease
linearly with the size of the network. That is, given a channel bitrate of W and N nodes in the network,
the maximum available capacity per node will be % In a seminal work on multihop wireless networks,
Gupta and Kumar [19] showed that the per node capacity in a multihop environment decreases with
the square root of the number of nodes (i.e., O (%)) Thus, we can observe a O(v/N) improvement
in the available capacity per node by using multihop wireless networks (as compared with single hop
networks). Intuitively, this occurs because multiple communications can occur simultaneously among

non-interfering pairs of nodes.

However, despite their promise, there remain research challenges associated with multihop wireless net-
works. Some issues include improving reliability, increasing throughput, and providing incentives to efficiently
share resources. In this dissertation we focus on two areas of importance: energy efficiency and security.

As wireless devices are more widely used, clearly security and energy consumption are major concerns.
From an energy perspective, it is increasingly evident that marginal gains in battery energy density necessi-
tate energy efficient protocols. In the security realm, growth in the value and amount of information being
transmitted over wireless channels demands confidentiality and integrity. Both are problems that need to be

addressed if ubiquitous wireless networks are to become a reality.

Energy Efficiency: The necessity of energy efficient protocols for wireless devices is motivated by the fact
that battery capacity has improved at a much smaller rate than that of other wireless device components.
This trend is quantified in Table 1.1, that shows the relative improvement over a decade of various laptop
components. While all of the other major components of the laptop showed one to three orders of magnitude
improvement, the battery energy density increased by only a disappointing factor of less than three. The
problem of available energy is further exacerbated by trends toward smaller devices (e.g., cell phones, sensors,
lightweight laptops) which will have less available physical space for batteries. Thus, it is safe to assume
that energy-constrained devices are a reality for the foreseeable future and that wireless protocol designers
must cope with this rather than hoping for Moore’s Law improvements in available energy.

In this work, we aim to reduce the energy consumption of the wireless networking interface by modifying
network protocols. Table 1.2 shows an experimental energy breakdown, by component, for data traffic on
a laptop and voice traffic on a cell phone. From this, we see that reducing the wireless interface energy

consumption is only one aspect of a comprehensive solution towards energy efficient wireless devices that

Table 1.1: Improvement of various laptop components between 1990 and 2001 [20-22].

Laptop Component Relative Improvement from 1990 to 2001
Disk Capacity 1200 x
CPU Speed 393 x
Available RAM 128 x
Wireless Transfer Speed 18 x
Battery Energy Density (J/kg) 2.7 %

also requires research in the areas of architecture, operating systems, and application design [23]. Though
our design techniques are applicable to multihop wireless networks in general, we note that our work is
particularly beneficial for devices with no display (e.g., sensors) or small displays (e.g., cell phones, iPods,
PDAs). Table 1.2 shows that the wireless interface energy consumption of such devices can account for over

60% of the device’s overall energy usage.

Table 1.2: Fraction of energy used by device components for different hardware and traffic [24].

| || Data Traffic on a Laptop | Voice Traffic on a Cell Phone |

Display 45% 2%
Transmit 5% 24%
Receive/Idle 10% 37%
CPU 40% 3%

Wireless interfaces often have four power levels corresponding to the following states: transmitting,
receiving, listening, and sleeping. Typically, the power required to listen is about the same as the power
to receive. The power to transmit is generally slightly higher than the receive/listen power. However, the
sleep power is usually one to four orders of magnitude less than the receive/listen power. For Mica2 Mote
sensors [25], these power levels are shown in Table 1.3. Thus, to save energy, the interface should sleep as

much as possible when it is not engaged in communication.

Table 1.3: Characteristics of a Mica2 Mote radio [25].

Radio State | Power Consumption (mW)
Transmit 81
Receive/Idle 30
Sleep 0.003

Motivated by the large reduction in energy consumption that is possible from entering the sleep state,
we focus on power save protocols. Our work looks at three techniques to improve energy efficiency in power

save protocols:

e Carrier Sensing for Energy-Efficient Signaling: Many power save protocols wastefully check for wake-
up signals by listening to the channel on the order of the time it takes to receive a packet. In Chapter 3,

we explore the use of carrier sensing to reduce the energy consumption of such protocols.

o Adaptive Energy-Saving Protocols: A common design used in both 802.11 [7] and sensor protocols [3,26]
is to use fixed listening and sleeping intervals regardless of the network environment. Building on our
previous work [27-29], in Chapter 4 we propose methods to dynamically adjust these intervals in

response to indicators such as the sending rate and desired latency.

o Energy-Efficient Broadcast Dissemination: Prior to our work, doing a broadcast flood in a power save
network gave a designer only two choices: a low-latency, high-energy flood or a high-latency, low-energy
flood. We provide a framework to allow more fine-grained control where the broadcast latency can be
lowered to a desirable level without immediately resorting to the highest energy state. Thus, devices

can save more energy while still providing an acceptable latency for a broadcast dissemination.

Security: Multihop wireless networks give rise to a new set of security and privacy issues. The most
obvious difference is the ease with which the channel can be eavesdropped. With wired networks, it takes
significantly more skill to find and access a network cable, splice it, and interpret its signals. With wireless
networks, even so-called “script kiddies” with little hacking expertise can download programs to tap the
wireless channel and view packets [30,31].

This real-world implications of this problem were greatly exacerbated when a fundamental flaw was
discovered in 802.11’s security protocol, WEP, by Fluhrer, Mantin, and Shamir [32] that allows the network
key to be discovered by sniffing encrypted packets. A popular implementation of this attack, AirSnort [33],
requires about 5-10 million packets to be overheard to crack the key, but other tools, such as aircrack [34] use
statistical methods to significantly reduce this number to the order of hundreds of thousands of packets on
average. Additionally, these tools can use packet injection techniques to actively force a vulnerable network
to generate more packets for collection. Even with the WPA protocol that replaces WEP, many users remain
vulnerable to standard dictionary-based password attacks that circumvent encryption.

A second issue with multihop wireless networks is that devices may be pushed farther away from a
trusted infrastructure. Thus, protocols must allow nodes to establish security among neighbors and multihop
endpoints without having a direct connection to a trusted entity.

Finally, the resource constraints of many devices may require new techniques to provide security and

privacy. On wired networks, public-key cryptography has been extremely effective in creating a secure

system of communication. However, the hardware used for sensors may have the resources to do only
symmetric key operations which are orders of magnitude more efficient.

Our work looks at the problem of key distribution in the context of wireless sensor networks where
devices are resource-constrained, can do only symmetric key cryptography, and cannot communicate with
a trusted source after deployment. Shared keys are fundamental in providing confidentiality and integrity
of data packets in such systems. In Chapter 6, we propose leveraging the channel diversity available in
wireless networks for key distribution. Our work exploits the underlying wireless channel diversity to address
the problem. In doing so, our key distribution protocol effectively addresses drawbacks in connectivity and
attacker resilience of previous techniques. Additionally, we look at using path diversity to further improve

security.

1.1 Main Contributions

The main contributions of our work are as follows:

e We propose carrier sensing techniques to improve the energy efficiency of power save protocols and
demonstrate its use with both in-band and out-of-band protocols (these terms will be defined in Chap-

ter 2).

e We propose adaptive sleeping and listening for in-band protocols to reduce energy consumption. This

compliments our earlier work of adaptive sleeping for out-of-band protocols [27-29].

e We propose a probabilistic approach for broadcast dissemination that allows a tradeoff in energy, la-
tency, and reliability. This gives users fine-grained control of these metrics to reduce energy consump-
tion while maintaining a desired latency and reliability. We implemented our protocol in TinyOS [11]

to demonstrate its effectiveness on sensor hardware.

e We propose using the underlying channel diversity to improve security in resource-constrained networks.
We design a protocol for symmetric key distribution that improves connectivity and resilience to

adversaries when compared with previous work.

1.2 Dissertation Outline

In Chapter 2, we review past work related to our dissertation. In Section 2.1, we discuss power save

protocols and describe in-band, and out-of-band protocols. In Section 2.2, we give an overview of protocols

for the efficient propagation of broadcasts. Section 2.3 reviews work in symmetric key distribution for sensor
networks.

In Chapter 3, we propose carrier sensing techniques to improve energy efficiency. In particular, we observe
that the energy nodes spend listening to detect a signal to wake up can be significantly reduced by using the
carrier sensing capabilities. We demonstrate how this technique can be used to augment both synchronous
and out-of-band protocols.

Chapter 4 explores methods of adaptive energy saving. By dynamically adjusting listening and sleeping
intervals, we reduce the energy consumption of in-band protocols (our previous work addressed adaptive
techniques for out-of-band protocols [27-29]). We look at both link layer and network layer protocols.

In Chapter 5, we quantify the effects on energy-saving on the latency and reliability of applications which
propagate information via multihop broadcast. We develop a simple, lightweight protocol that can augment
existing power save protocols to achieve a desired tradeoff among energy, latency, and reliability. This allows
broadcast propagation to be energy efficient while still achieving a desired latency and reliability. We also
describe our implementation of the protocol in TinyOS [11].

In Chapter 6, we develop a protocol for symmetric key distribution to address security in multihop
wireless networks. Our approach leverages the underlying channel diversity to create pairwise symmetric
keys that, with high probability, are known to only the two communicating nodes. Our results demonstrate
that the protocol performs well in connectivity and resilience to adversary devices.

Chapter 7 concludes the dissertation and offers some directions for future work.

Chapter 2

Related Work

In this chapter, we discuss related work for power save and key distribution in multihop wireless networks.
In Section 2.1, we give an overview of the power save problem and define in-band and out-of-band protocols
in Section 2.1.1. In Section 2.1.2 and Section 2.1.3, we focus on related work for our carrier sensing and
adaptive energy saving techniques, respectively. Section 2.2 reviews previous work in efficient broadcast

propagation. We discuss key distribution in sensor networks in Section 2.3.

2.1 Power Save Protocols

The fundamental question power save protocols seek to answer is: When should a radio switch to sleep mode
and for how long? In Section 2.1.1, we broadly categorize protocols as either in-band or out-of-band. In-band
protocols do all wake-up signaling on the data channel. By contrast, out-of-band protocols use a separate,
orthogonal channel to do the wake-up signaling.

We note that the focus of this dissertation is on power save protocols to reduce idle listening energy.
A vast area of research exists in energy efficient wireless transmission (e.g., power control, physical layer
encoding) that is independent from our work. We do not discuss these techniques in this work, but refer

interested readers to [35-38] and references therein for discussion of these techniques.

2.1.1 Taxonomy

In-Band Protocols: These protocols use one channel for both wake-up signaling and data communica-
tions. The most obvious advantage to this approach is that devices only need one half-duplex channel, which
is available on any wireless device. A disadvantage is that the signaling overhead may now interfere with data
communication. Protocols in this class can be sub-categorized as synchronous or asynchronous as described

below.

e Synchronous Protocols: Nodes schedule a time in the future to wake up. The scheduled time can be
absolute (e.g., using synchronized clocks to wake up at certain epochs) or relative to some event (e.g.,
a node wakes up T seconds after the last packet reception). One example [7] is IEEE 802.11’s Power
Save Mode (PSM) where all nodes wake up and remain on for a fixed time at the start of each beacon
interval. Another example [27-29] is two communicating nodes that wake up T seconds after the last

packet reception and T is adjusted dynamically based on traffic patterns.

Protocols that require global synchronization need some external synchronization mechanism. If
available and operating in the proper environment (e.g., outdoors), GPS could be used for this pur-
pose. For a survey of other synchronization protocols, see [39]. Recent synchronization protocols for
sensors [40] demonstrate precision on the order of a microsecond. For the purposes of our work, we

assume that some such external mechanism is available.

e Asynchronous Protocols: Nodes wake up independently according to their own schedule and try to
discover other nodes that are also awake. When the wake-ups of two nodes overlap, they can com-
municate. For example [41,42], nodes may choose deterministic schedules to guarantee overlap within
a bounded latency. Another example [43,44] is nodes that wake up non-deterministically such that

overlap is within a bounded time with high probability.

Generally, these techniques are orthogonal. For example, a node could use an asynchronous protocol
to discover neighbors and, after discovery, use a synchronous protocol to schedule subsequent wake-ups.
Similarly, an out-of-band protocol (described later in this section) could be used to wake up a neighbor to
send the first data packet and synchronous wake-ups could be scheduled for later packets (see [27-29] for an
example of this combination of techniques).

We begin by describing 802.11 PSM [7]. Most of our work on in-band protocols focuses on improving
the 802.11 PSM design. The reasons for this are two-fold. First, it has the most complete specification of
any open standard power save protocol. Second, almost any protocol that schedules a wake-up time when
a node and all of its neighbors will be awake bears a strong resemblance to 802.11 PSM’s design. As an
example, S-MAC [45], a synchronous wake-up protocol for sensors, basically uses the same design as 802.11
PSM with minor differences. So, the 802.11 PSM design is versatile and is the basis for many synchronous
protocols.

In 802.11 PSM [7], nodes are assumed to be synchronized and awake at the beginning of each beacon
interval. After waking up, each node stays on for a period of time called the Ad hoc Traffic Indication

Message (ATIM) window. During the ATIM window, since all nodes are guaranteed to be listening, packets

that have been queued since the previous beacon interval are advertised. These advertisements take the
form of ATIM packets. More formally, when a node has a packet to advertise, it sends an ATIM packet
to the intended receiver during the ATIM window (following IEEE 802.11’s CSMA/CA rules). In response
to receiving an ATIM packet, the destination will respond with an ATIM-ACK packet (unless the ATIM
specified a broadcast or multicast destination address). When this ATIM handshake has occurred, both
nodes will remain on after the ATIM window and try to send their advertised data packets before the next
beacon interval (subject to CSMA/CA rules). If a node remains on after the ATIM window, it must keep
its radio on until the next beacon interval [7]. If a node does not send or receive an ATIM, it will enter
sleep mode at the end of the ATIM window until the next beacon interval. This process is illustrated in
Figure 2.1. The dotted arrows indicate events that cause other events to occur. Node A sends a data packet

to B, while C, not receiving any ATIM packets, returns to sleep for the rest of the beacon interval.

Packet Arrivals
At A’s Queue

DATA

A’s N
Transmissions
To B

ATIM
DATA

B’s
Transmissions
To A

ACK
4
ACK

ATIM—~

i Beacon Interval

"ON"

A’s
Radio Status ———

L SLEEP

B’s
Radio Status ————
L ATIM
. Window |

L SLEEP

"ON"

"ON"

C’s
Radio Status ———— } : — SLEEP
to 41 12 13

Time —>»

Figure 2.1: IEEE 802.11 IBSS power save mode [7].

S-MAC [45] is similar to 802.11 PSM, but with some modifications specifically for sensor networks. It
reduces energy consumption at the expense of fairness and latency. S-MAC uses a simple scheduling scheme
to allow neighbors to sleep for long periods and synchronize wake-ups. A group of nodes synchronize by one

node broadcasting a duration of time it will be awake. After this period, the node will sleep for the same

amount of time. Each node will follow this sleep/awake schedule also and broadcast it to their neighbors. If
a node receives two different schedules, it will remain awake according to both schedules. In S-MAC, nodes
enter sleep mode when a neighbor is transmitting and fragment long packets to avoid costly retransmissions.
After each fragment, an ACK is sent by the receiver so that nodes waking up in its vicinity will sense the
transmission.

TRAMA [46] uses TDMA to schedule queued packets. The TDMA scheduling is done based on an
election algorithm within a node’s two-hop neighborhood to ensure that every node has a slot to transmit
data to its receiver while avoiding collisions. Also, when a node does not have anything to send in its assigned
slot, other transmitters may use the slot.

Other protocols use TDMA to schedule “flows” of data packets [47,48] where periodic flows try to find
slots to transmit data at regular intervals without interfering with existing flows. Thus, in these protocols, the
wake-up procedure requires the sender/receiver pair to wake up during a slot when they will have exclusive
access to the medium. In both [47] and [48], non-interfering slots are discovered listening to the beginning
of a slot for transmissions. If no transmission is detected within a specified time, a node can claim the slot
for its flow. Then, in subsequent cycles, the node can always transmit a packet in that slot without other
nodes interfering.

In the asynchronous protocol presented in [42], nodes choose their awake times such that they are guar-
anteed to overlap with each neighbor’s awake time within a bounded time period. In [42], three protocols
are proposed that allow neighbors to advertise to each other by guaranteeing some overlap in their awake
windows. The first protocol calls for nodes to be awake for at least half of each beacon interval and alternate
their advertisement windows at the beginning and end of intervals. This guarantees overlap but requires
significant energy consumption. The second approach requires the nodes to stay awake for a long active
interval only once every T beacon intervals. During the other T'— 1 intervals, the node will wake up for
only the duration of an advertisement window. The final approach is quorum-based. In this approach, each
node picks 2n — 1 out of n? intervals (where n is a specified value) in such a way that at least two chosen
intervals are guaranteed to overlap with a neighbor’s. Each chosen interval, the node will stay awake for the
entire interval. During the other intervals, the node will stay awake for only an advertisement window. The
authors note that broadcast is still difficult in such a scheme. Also, these methods require all nodes to have
the same advertisement window and beacon interval lengths.

In [41], a deterministic protocol for neighbor discovery is presented. Sleep schedules are chosen such that
every pair of neighbors is guaranteed to overlap for at least one slot. Thus, if a node is awake X out of Y

slots, energy consumption is reduced and all neighbors can contact each other within Y slots to synchronize

10

their communication.

In [44], a non-deterministic approach is used for neighbor discovery. Nodes wake up probabilistically
in each slot and can communicate only with other nodes that are also on in that slot. Thus, this is a
nondeterministic protocol where a node is awake for randomly chosen X time slots out of Y (where X < Y').
Each node enters a listen or transmit mode with a specified probability such that, with high probability,
neighbors will discover each other over some time interval.

The protocol in [43] is based on continuum percolation theory. Packets are broadcast throughout a
network of nodes following independent sleep schedules. A packet sender broadcasts a packet until most of

its neighbors are likely to have received the packet with high probability.

Out-of-Band Protocols: In this domain, a node’s data radio sleeps until an out-of-band channel alerts it
to wake up. An example [49,50] is a low-power radio idly listening on a separate, wake-up channel. Another
example [2,3] is a wake-up radio that periodically idly listens to the channel. In both examples, when a
wake-up signal is detected, the data radio turns on. The out-of-band channel is non-interfering with respect
to the data channel. The disadvantage of this approach is the hardware complexity and potentially increased
bandwidth usage. However, the advantage is that no coordination is required to avoid interfering with data
packets and that the wake-up radio may be designed to use less power than the data radio.

Examples of out-of-band protocols include PicoRadio [49,51-53] which uses a low-power hardware device
to serve as a wake-up channel with a low idle listening cost. A MAC protocol has been designed that allows
nodes to wake up a neighbor when data needs to be sent. When a node wishes to send data, it encodes the
neighbor’s receiving channel in a beacon on the wake-up channel. The nodes then communicate over the
high powered data channel of the receiver. This design uses a CDMA scheme that requires each neighbor
within a 2-hop range to be assigned a unique channel and discover and maintain the channel IDs for each
1-hop neighbor, which is difficult in a distributed setting. Also, the channel ID is encoded in the wake-up
signal, which increases the hardware complexity. Table 2.1 shows the target specifications for the PicoRadio

hardware.!

Similar to PicoRadio, in [54] as well, a hardware design for a wake-up radio is presented. A wake-up
channel is also used in [50]. Here, a low-power radio is integrated with a PDA. The protocol is implemented
from off-the-shelf hardware. The devices register their presence with a server via a proxy. When another

node wishes to communicate, the proxy will send a short wake-up packet over the low power, low bit rate

IThese values were obtained in an email correspondence with Brian Otis, while he was at the University of California—
Berkeley.

11

Table 2.1: Target specifications for PicoRadio hardware.

| || Wakeup Radio | Data Radio |

Transmit Power (¢W) 1000 1000
Receive/Idle (1 W) 50 1000
Sleep (1W) — 0
Bitrate ~ 100 bps 50 kbps
Range (m) 10 10
Transition Energy, sleep—idle — 1ps x 1TmW
Transition Energy, idle—sleep — 1pus x 0mW

channel. This will cause the high powered radio to turn on so that data communication can begin. However,
this protocol is designed for systems with centralized access points or proxies.

In [55], paging interfaces are used so a base station can wake up certain nodes when it has data to send.
Here a base station uses RFID tags to wake up devices that could be in any one of L sleep states. Each
sleep state uses less power in steady state, but requires more delay and power when transitioning to the fully
awake state. A device will remain in a power save state at least long enough to get a positive energy gain
before transitioning to the next lower power state. The base station tracks this cycle for each device and
when it has data to send, it waits as long as possible before waking the device and transmitting subject to
QoS requirements. When the base station wishes to wake a device up, it pages all devices in that current
sleep state. The non-target devices in the paged sleep state will then start the sleep cycle again once they
determine that the data is not for them. This allows the size of the paging message to be on the order of
the number of sleep states instead of the number of nodes.

Another work [56] uses out-of-band channels to pipeline wake-ups. This allows a node receiving a data
packet to start waking up the next node on the path using the out-of-band channel. Thus, the data reception
and wake-up process occur in parallel.

STEM and STEM-BT [2, 3] are also out-of-band wake-up protocols. In Chapter 3, we propose carrier
sense techniques can be applied to these protocol. Thus, we defer a detailed description of these protocols
to Section 3.2.1.

The PAMAS protocol [57] adapts basic mechanisms of IEEE 802.11 [7] to a two-radio architecture.
PAMAS allows a node to sleep to avoid overhearing a packet intended for a different destination or to avoid
interfering with another node’s reception by transmitting. The control channel is used to exchange RTS/CTS
packets, emit busy tones to eliminate interference, and probe ongoing communications for their duration.
Whenever a node awakes and detects another transmission, it can probe the control channel to determine

how much longer this transmission will continue. Unlike our work, it ignores the idle listening problem.

12

2.1.2 Carrier Sense Techniques

The idea of preamble sampling has been used with B-MAC [26]. The basic idea of preamble sampling is that
the packet preamble is long enough to be detected by all nodes that are periodically sampling the channel
in between sleep periods (i.e., the preamble must be slightly longer than the sleep time between sampling
periods). When sleeping nodes sample the channel and detect the preamble, they remain on to receive the
entire packet.

WiseMAC [58] improves on B-MAC by having nodes store the next sampling time of a node with which
it is sending packets. Thus, after accounting for the maximum clock drift since the last packet was sent,
a node can usually transmit a much shorter preamble than is required by B-MAC and, therefore, greatly
improves energy consumption. While preamble sampling is similar to one of our proposed carrier sensing

techniques in Section 3.1, some key differences are discussed in Section 3.1.2.

2.1.3 Adaptive Energy-Saving Techniques

Most adaptive protocols try to adjust sleeping and/or listening intervals based on traffic in the network.
Another class of adaptive power save protocols adjust in response to the topology. We primarily focus on
the traffic-based approaches because they relate closely our work. However, at the end of this subsection,
we mention the topology-based research.

In Table 2.2, we give classify our previous work [27-29] in relation to our work in this dissertation.
In [27-29], we used synchronous wake-ups to adaptively sleep in an out-of-band protocol. Nodes engaged
in communication schedule times in the future to wake up based on past traffic patterns. In our proto-
cols [27-29], nodes dynamically adapt to changing traffic rates try to minimize energy consumption for their
communication. The adaptive listening techniques from Section 4.1 could be applied to our previous work

as well.

Table 2.2: Classification of our work.

| || Adaptive Listening | Adaptive Sleeping |
In-Band Section 4.1 Section 4.2
Out-of-Band || Techniques from Section 4.1 applicable | Our previous work [27-29]

In [59], it is shown that the static ATIM window of 802.11 PSM does not work well for all traffic loads.
Intuitively, higher traffic loads need larger ATIM windows. This observation motivates our adaptive design

in Section 4.1 that dynamically adjusts the ATIM window.

13

Other works have also proposed dynamic ATIM window adjustment. DPSM [60] is designed for single-
hop networks (i.e., WLANSs) and uses indications such as the listening time at the end of the ATIM, the
number of packets pending for a node, and the number of packets that could not be advertised in the previous
beacon interval. Unlike our work, this protocol adjusts the current ATIM window based on traffic in past
beacon intervals. By contrast, our protocol adjusts the current ATIM window based on the traffic in the
current beacon interval. IPSM [61] is similar to our work in that the ATIM window ends when the channel
is idle for a specified amount of time. However, IPSM works in only single-hop networks since it relies on a
node and all its neighbors having a consistent view of channel activity. Unlike DPSM and IPSM, all of our
protocols are designed for multihop networks.

In TIPS [62], the ATIM window is divided into two slots. If a beacon packet is received during the first
slot, it indicates that nodes should stay on to receive ATIMs later in the ATIM window. If the first beacon
packet is not received until the second slot, then the node can return to sleep since no more advertisements
will follow. In our work, carrier sensing is used as an indication that nodes should remain on longer. The
time it takes to carrier sense is usually much shorter than the time it takes to access the channel and send
an entire packet. Additionally, TIPS uses only static ATIM window sizes whereas our techniques allows
dynamic adjustment of the window.

T-MAC [63] extends S-MAC by adjusting the length of time sensors are awake between sleep intervals
based on communication of nearby neighbors. Thus, less energy is wasted due to idle listening when traffic is
light. In the T-MAC work, the authors refer to the early sleeping problem that occurs when a node returns
to sleep when one of its neighbors has data to send to it but is deferring to another sender. Essentially,
this early sleeping problem is the main problem that we address in Section 4.1. The two techniques that
T-MAC proposes to address the problem are not applicable to advertisement windows. One reason is that
T-MAC is designed for relatively large data packets and relies on short RTS and CTS control packets to
address the early sleeping problem. By contrast, since the ATIM and ATIM-ACK packets exchanged in the
advertisement window are about the same size as RT'S and CTS packets, it would be a significant increase
in overhead to precede the ATIM/ATIM-ACK handshake with RTS and CTS packets. Also, T-MAC results
in an increase in energy consumption to improve throughput. In our work, we prefer reducing energy
consumption over increasing throughput. Our work addresses the early sleeping problem without inducing
any extra control overhead (since the ATIM/ATIM-ACK packets are already small) and is designed to reduce
energy consumption, not improve throughput.

In [64,65], modifications are made to S-MAC to reduce the multihop delay of packet forwarding. Also

in [64], a global scheduling algorithm is developed for S-MAC to converge to one sleep schedule in the

14

network. The carrier sensing techniques in Section 3.1 could be used to complement the S-MAC protocols.

In [66], a protocol is proposed that works with on-demand routing and uses 802.11’s PSM when a node
is not engaged in sending, receiving, or forwarding data. When a node is communicating, soft-timers are
used to transition the node to an idle listening mode that reduces latency and preserves throughput better
than using only 802.11’s power save. However, the timers do not adjust to the traffic rate, so if traffic is not
frequent enough to refresh the timers, the benefits of the protocol are lost. Nodes must promiscuously listen
to the packets of neighbors to determine if they are disconnected or in power save mode. In this sense, the
protocol does a coarse-grained form of adaptive sleeping based on whether a node is forwarding traffic. Our
approach in Section 4.2 takes a much more fine-grained adaptive sleeping approach based on the desired
latency of an application. TITAN [67] extends the work from [66]. In TITAN, route requests are delayed by
sleeping nodes to allow the route discovery procedure to favor nodes that are already in the idle listening
state. This helps reduce the overall energy consumption in the network.

LISP [68] is an extension to 802.11 PSM where nodes try to predictively remain on after the ATIM
window to forward multihop traffic at a lower latency. When a node is scheduled to sleep at the end of
an ATIM window, it may remain on based on correlations between overheard ATIM-ACKSs and previous
ATIM/ATIM-ACK handshakes. Our adaptive sleeping technique, on the other hand, attempts to achieve a
latency bound while still conserving as much energy as possible.

In [69], ESSAT is designed to handle Constant BitRate (CBR) traffic in sensor networks. In particular,
ESSAT predictively wakes up downstream neighbors based on past reception times for CBR flows. The wake
up times are adjusted when phase shifts occur in the flow due to packet loss and contention. Our protocols

are designed for traffic that is not necessarily CBR.

Topology Adaptive Protocols: Another common strategy is for nodes to remain awake based on their
local topology and/or traffic [70,71]. Work in this area investigates how a subset of the nodes in a system
can enter a low power state without significantly degrading the performance achievable if all nodes were to
remain in high power mode.

The AFECA algorithm [72] allows nodes to sleep based on the size of their neighborhood. If node density
is large, then more nodes can sleep without greatly increasing the latency of data flows. GAF [71] assumes
the nodes have some location information and form virtual grids. The size of the grids is chosen such that
the nodes in two adjacent grids are equivalent with respect to forwarding packets. Then, within each grid,
a discovery protocol tries to ensure that most of the time one node remains active while the rest enter a

low-power state. As mobility increases, the discovery process should be more frequent.

15

The goal of SPAN [70] is to save energy while not degrading the latency and throughput achievable
in 802.11 without power save mode. This protocol operates between the MAC and routing layers. The
system allows all nodes to enter power save mode except for elected coordinators. At the MAC layer, nodes
periodically exchange hello messages that contain its set of neighbors, coordinators, and whether it is a
coordinator. Nodes will then elect themselves coordinators if their neighbors would get better connectivity
by it doing so. A random delay is introduced before nodes declare themselves coordinators. This delay varies
inversely with the amount of connectivity that would be achieved and inversely with the amount of energy

remaining at the node. For fairness, the coordinators will periodically withdraw.

2.2 Efficient Broadcast Propagation

Broadcast is prevalent in wireless networks as a means to propagate information. The application on which
we focus in testing our protocol in Chapter 5 is code distribution, whereby a source periodically sends out
patches for sensors to apply to their software. In [73], the authors demonstrate a software architecture to
allow the application of such updates. In other works [74-76], the focus is on reducing the flooding overhead
for disseminating code updates. In our work, we look at the effects on energy-saving on the reception
rate of code updates. Other applications of multihop broadcasts include route discovery in ad hoc routing
protocols [77,78] and querying for sensor data [79].

One popular method for reducing the overhead of broadcast is to form a backbone in the network where
only certain nodes forward data [80-82], which can reduce overhead. Another method, which is most similar
to our work in Chapter 5, is probabilistic broadcast [83-85], where nodes only forward a broadcast with
some probability, p. By doing this, the broadcast is capable of reaching most of the nodes in the network
while reducing the overhead. This is based on the observation that a broadcast flood typically has a high
level of redundancy [86]. In our protocol, we try to use this redundancy to reduce the energy consumed by

the broadcast.

2.3 Symmetric Key Distribution

In Chapter 6, we propose a novel method of symmetric key establishment for a sensor network that uses
channel diversity, as well as spatial diversity, to create link keys for one-hop neighbors. Given this protocol,
we characterize the tradeoffs that arise in energy and security. Establishing such keys is important because

public keys are too computationally intensive for many sensors. Sharing a symmetric key with neighbors

16

allows for secure aggregation as well as transmitting data used to authenticate hash chains, for example. In

this section, we give an overview of five approaches to the problem.

Trusted Intermediary: This approach is similar to that of Kerberos [87], which is used widely on wired
networks. Every node shares a secret symmetric key with a trusted intermediary that is loaded before
deployment. The key establishment protocol requires two sensors that wish to establish a pairwise key to
communicate with the trusted intermediary to create the key. SPINS is an example of this approach [88]
A disadvantage of this approach is that the server may become a bottleneck in large networks and that the

trusted intermediary must be online whenever key establishment is desired.

Key Predistribution: Eschenauer and Gligor [89] were among the first to consider key predistribution for
sensor networks. In their work, referred to here as the basic scheme, sensors are loaded with randomly chosen
keys out of a master key pool before deployment. After deployment, a sensor can securely communicate with
its neighbors if it shares at least one key in common with the neighbor. Chan et al. [90] extend the basic
scheme to require neighbors to share ¢ keys in common before a link is possible. This improves security at
the cost of decreased connectivity. Their work also proposes the idea of using multiple node disjoint paths
to strengthen security. This is a different form of diversity than what we propose, but demonstrates how
the concept can improve security in diverse path selection. Other schemes propose that keys be distributed
deterministically based on a sensor’s ID [91,92].

Du et al. [93] adapt a key predistribution scheme originally proposed by Blom [94] for sensor networks by
using finite fields to generate multiple key spaces that can be randomly deployed to sensors. Liu et al. [95]
extend a key distribution method proposed by Blundo et al. [96] that uses polynomial based distribution
methods.

In Section 6.5.1, we discuss the advantages and disadvantages of our approach compared with key pre-

distribution.

Transitory Keys: The LEAP architecture [97] provides a method of establishing pairwise keys provided
sensors cannot be compromised during a short initialization phase after deployment and the sensor hardware
that can be trusted to completely erase a master key after initialization. Thus, the master key is transitory
at each device and only available during the initialization. Some disadvantages of this approach are that (1)
if a node is compromised during the initialization period, the entire network may be compromised and (2)
the low-end sensor hardware must ensure that the master key is erased from memory such that recovery is

not possible.

17

Public Key Exchange: Public key exchanges to generate the symmetric keys for bulk encryption are
used in many Internet protocols (e.g., IPsec). The Diffie-Hellman key exchange [98] and Elliptic Curve
Diffie-Hellman (ECDH) [99] are two widely used protocols designed for this purpose. The primary reason
for not using such protocols in sensor networks is the large computational overhead incurred by asymmetric
key cryptography when compared with symmetric key protocols. However, elliptic curve cryptography has
been implemented in TinyOS [100,101]. In Table 2.3, we give the performance metrics for the two Mica2

Mote public key implementations of which we are aware, EccM 2.0 [100] and Sizzle [101].

Table 2.3: Performance of public key exchange implementations on Mica2 Motes.

| | EccM 2.0 [100] | Sizzle [101] |

Key Size (bits) 163 160
Bits of Security? 80 80
RAM Usage (KB) 1.03 3.08
ROM Usage (KB) 335 60
ECDH Time (s) 34.173 3.8

& «An algorithm that has a ‘Y’ bit key, but whose strength is compa-
rable to an ‘X’ bit key of such a symmetric algorithm is said have a
‘security strength of X bits’ or to provide ‘X bits of security’. Given
a few plaintext blocks and corresponding cipher, an algorithm that
provides X bits of security would, on average, take 2X ~1T of time
to attack, where T is the amount of time that is required to per-
form one encryption of a plaintext value and comparison of the

result against the corresponding ciphertext value.” [102]

While computationally expensive, this approach may be acceptable in long-lived sensor networks where
the cost of the key exchange is amortized over the lifetime of the sensors. We are unaware of any rig-
orous quantitative analysis comparing the public key exchange implementations with pure symmetric key
approaches in security, performance, and memory usage. We believe that the research community could
greatly benefit from such a detailed comparison. In the absence of such results, our work explores a pure

symmetric key exchange approach.

Broadcasting Plaintext Keys: The work that is most similar to ours is that of Anderson et al. [6]. The
protocol is based on the assumption that the number of adversary devices in the network at the time of
key establishment is small (in their results, less than 3% of the nodes are adversaries). Thus, during the
initialization phase, a sensor, u, will broadcast a randomly generated plaintext key, k,, that is overheard

by all its one-hop neighbors (including adversaries). Each one of u’s neighbors replies with the message

18

{v, kuo } &, , where v is the ID of the neighbor and k,, is a pairwise key randomly generated by v.2 After this
exchange, u and v use key k,, for communication. Power control is used to reduce the number of devices
that overhear the key exchange.

In Section 6.5.2, we discuss in detail the differences between our work and Anderson’s. We briefly
mention these differences here. First, our protocol is much more resilient to eavesdropping by attacking

3 Second, a link cannot be

devices since we leverage channel diversity and use location diversity more.
authenticated in Anderson’s scheme since u or v has no way to verify the sender of the messages. In
contrast, we provide mechanisms that allow a trusted source to authenticate sensor IDs and broadcasted

keys. Refer to Section 6.5.2 for more details about these differences.

2We use the notation {M}}, to indicate a message, M, encrypted using key k.
3We note that the goal in [6], unlike our work, is not to make it difficult for a nearby attacker to compromise a link or to
operate in hostile environments where there may be many adversaries.

19

Chapter 3

Carrier Sensing for Energy-Efficient
Signaling

Many power save protocols described in Section 2.1 follow a common design where potential receivers peri-
odically awake to listen for some type of wake-up signal in between long periods of sleep. However, many
such protocols are inefficient from an energy perspective in that this listening period is on the order of a
packet transmission time. The increase in energy consumption is particularly significant in networks with
light traffic, as might be expected in many sensor applications.’

Based on this observation, we propose using the carrier sensing capabilities that are available at the
physical layer to reduce the listening period for wake-up signals to be on the order of the time it takes to
detect the channel busy. This detection time is typically much smaller than a packet transmission time. In

this chapter, we demonstrate how this technique can be applied to both a in-band protocol (Section 3.1.1)

as well as out-of-band protocols (Section 3.2.5 and Section 3.2.6).

3.1 Carrier Sensing for In-Band Protocols

In this section, we further discuss our proposed techniques to leverage carrier sensing for energy efficiency
and demonstrate their application to an in-band power save protocol. Specifically, we look at techniques
to improve the IBSS Power Save Mode (PSM) in IEEE 802.11 [7]. IBSS (Independent Basic Service Set)
is the protocol set for ad hoc networks. While the techniques we propose are tested with 802.11 PSM,
in Section 3.1.1 we discuss how they can augment other power save protocols. Our results show that the
proposed improvements to 802.11 PSM can greatly reduce energy consumption with little increase in the

average packet latency. Our carrier sensing protocol will be combined with an adaptive listening and adaptive

1We note that if traffic is heavy in a network, then using any type of power save is generally not useful.

20

sleeping scheme in Section 4.1 and Section 4.2, respectively. We defer the presentation of simulation results

to these sections.

3.1.1 Protocol Description

We use a short carrier sensing period preceding the ATIM window where nodes can indicate whether they
intend to advertise any data. Thus, when none of a node’s neighbors are going to advertise any data, the node
can return to sleep without remaining on for the ATIM window. In Section 4.1.1, we further improve the
energy consumption of the protocol by allowing nodes that participate in the ATIM window to dynamically
adjust the size of their ATIM window. By using this technique, nodes that do not receive any ATIMs can
usually return to sleep sooner than if a static ATIM window size is used.

We make the assumption that the nodes in the network are time synchronized by some out-of-band
means. For example, the nodes may be GPS-equipped. Later, we discuss modifications to the protocols to
handle some synchronization errors. Thus, the timing synchronization function (TSF) of 802.11 is disabled
and beacons are never sent. For consistency with the terminology in related work, we will still refer to the
time between ATIM windows as a “beacon interval” even though no beacons are sent.

From the description of 802.11 PSM in Section 2, we observe that it is possible that most beacon intervals
have no packets to be advertised. In this case, the ATIM window needlessly wastes energy. However, when
traffic is queued at the beginning of a beacon interval, nodes need a mechanism to advertise their packets.
Thus, the ATIM window concept cannot be completely removed. What is needed is a energy-efficient binary
signal so that a node can let neighbors know when it has traffic to advertise and, hence, an ATIM window
is needed for that beacon interval.

For this purpose, we propose Carrier Sense ATIM (CS-ATIM) that adds a short carrier sensing period
at the beginning of each beacon interval as shown in Figure 3.1. The basic idea is that the time it takes to
carrier sense the channel busy or idle, T, is significantly smaller than the ATIM window, Ty,,. Rather than
every node waking up for T,,, at the beginning of every beacon interval, the nodes will wake up for only T¢s
at the beginning of every interval when no packets are to be advertised in their neighborhood. When packets
are to be advertised, the nodes will wake up for an entire ATIM window after the carrier sensing period.

Using Figure 3.1, we will explain how CS-ATIM works. The shaded regions in Figure 3.1 indicate that
a node is transmitting a packet. At time ¢y, no packets are to be advertised so all nodes wake up for T,
time and return to sleep when the channel is detected idle. At time ¢;, the nodes wake up for the start of
the next beacon interval. This time, node A has a packet to advertise, so it transmits a “dummy” packet

to make the channel busy. When nodes B and C finish carrier sensing the channel at time t; + T¢s, the

21

! Beacon Interval ‘ Beacon Interval

- > ‘ ,i HONH
A’S ﬂ : :
Radio Status L | ‘ SLEEP
| Zllx 2|« |
! 'S O < O |
‘ L | < Al < |
: | ‘ y ‘ y i HON"
Bs || 1N ;
Radio Status — i | SLEEP
g T }
- N71—"05 | -2, I ”ONH

Cs JW § H SLEEP

Radio Status —, ‘

Figure 3.1: CS-ATIM protocol (T.s and T,,, are not drawn to scale).

channel is detected busy because of A’s packet transmission. Thus, all nodes who carrier sensed the channel
busy or transmitted a “dummy” packet will remain on for an ATIM window of length T, after the carrier
sensing period. During the ATIM window, A sends an ATIM to B and B replies to A with an ATIM-ACK.
Because of this exchange, A and B will remain on for the rest of the beacon interval. Because C did not
send or receive an ATIM during the ATIM window, it returns to sleep at the end of the ATIM window at
time to. After the ATIM window, A and B exchange the data packet and corresponding ACK. At time t3,
a new beacon interval begins and all of the nodes return to sleep after carrier sensing the channel as idle.
The value of Tt is chosen to be long enough to carrier sense the channel as idle or busy with a desired level
of reliability. According to the 802.11 specification [7], the clear channel assessment (CCA) for compliant
hardware must be less than 15 ps. In our experiments, we use a much larger value for T, to mitigate the
effects of short-term fading. The dummy packet transmitted by a node with packets to advertise does not
contain any information that needs to be decoded; its only purpose is to cause other nodes to detect the
channel as busy. The advantage of not having information in the dummy packet is that multiple nodes can
transmit simultaneously, causing collisions at the receivers, without hindering the protocol. If a collision
occurs at the receiver, it can still detect the channel as busy and remain on for the ATIM window. In the
ATIM window, nodes use the standard 802.11 CSMA/CA protocol to send their ATIMs and ATIM-ACKs
while avoiding collisions. A node that transmits a dummy packet cannot carrier sense dummy packets being

sent by other nodes at the beginning of the beacon interval. However, this does not affect the protocol since

22

a node stays on for the ATIM interval whenever it transmits a dummy packet or carrier senses the channel
busy.

From this description of CS-ATIM, clearly nodes can use significantly less energy than 802.11 PSM
listening at the beginning of each beacon interval when no packets are to be advertised. When packets are
to be advertised, CS-ATIM uses only slightly more energy than 802.11 PSM because of the short carrier
sensing period. For packet latency, 802.11 PSM does slightly better than CS-ATIM. One reason is that
data packets that arrive after the carrier sensing period but before the end of the ATIM window may be
sent in the current beacon interval in 802.11 PSM. In CS-ATIM, such packets may have to wait until the
next beacon interval. Also, CS-ATIM has a slightly larger delay since the ATIM window does not end until
Tes 4+ Taw, whereas the 802.11 PSM ATIM window ends T,,, after the beginning of the beacon interval.

With CS-ATIM, we note that carrier sensing for energy on the channel, as opposed to actually decoding
a packet, runs the risk that nodes may erroneously carrier sense energy that is due to interference in the
frequency band rather than the dummy packet transmission. In this case, a node remains on for the ATIM
window even though none of its neighbors sent a dummy packet. We refer to this as a false positive. In
Section 4.1.3, the effects of false positives on CS-ATIM are tested.

As mentioned, CS-ATIM can be adapted to operate in networks without perfect synchronization. We
assume that the node’s clocks are always within A seconds of each other. Thus, A represents the maximum
error between the clocks of any two nodes in the network. To handle synchronization errors, the following

changes are made to CS-ATIM:

e At the beginning of a beacon interval, a dummy packet is transmitted for 2A + T, time instead of T

time.

e Nodes that do not have packets to advertise begin their carrier sensing period A time after the beginning
of the beacon interval (according to their local clock). Originally, these nodes would begin carrier

sensing immediately at the beginning of a beacon interval.

e For dummy packet transmitters, ATIM windows last for 2A + T, time instead of T,,, time. A node
is not allowed to transmit any ATIMs for the first A time of the ATIM window and the last A time
of the ATIM window. However, a node may send ACKs, ATIM-ACKs, and receive packets during the

entire 2A + T,,, duration of the ATIM window.

e For nodes that sense a dummy packet, ATIM windows last for 3A + T,,, time instead of T, time.

Such a node may reply to any ATIMs that they receive during this 3A + Ty, period with ATIM-ACKs.

23

To preserve the flow of the dissertation, we move the discussion of the correctness of these modifications to
Appendix A.

The basic idea from CS-ATIM can be adapted to other power save protocols besides 802.11 PSM. When-
ever a node is scheduled to listen in a power save protocol, it can do carrier sensing at the start of its
scheduled wake-up time to determine if it can return to sleep because no nodes have data to send. For
example, in a TDMA protocol, nodes can carrier sense at the beginning of their scheduled slot and return

to sleep if no data needs to be sent.

3.1.2 Comparison with Preamble Sampling

We note that the technique described in Section 3.1.1 is similar to the preamble sampling used in protocols
such as B-MAC [26] and WiseMAC [58]. However, our proposed carrier sensing technique has some key
differences when compared with these preamble sampling protocols. The advantage of preamble sampling is
that it works in completely unsynchronized environments.? However, because the nodes may transmit their
preamble at any time (which serves as the wake-up signal), the probability increases that the preamble will
collide with an ongoing data transmission (e.g., due to hidden terminals). By contrast, our protocol restricts
wake-up signals to a specific time when data packets are not being transmitted. Also, because the wake-up
signal in our protocol serves as only a binary indication of whether or not the channel is busy, interference
among wake-up signals is tolerable, as discussed in Section 3.1.1. With preamble sampling, interference may
affect packet reception since the preamble may synchronize the bits of the incoming data packet.

Another disadvantage of preamble sampling is that broadcast, which is commonly used in wireless com-
munication, requires a large preamble transmission. In particular, the preamble must be slightly longer than
a beacon interval (which is at least on the order of tens of milliseconds and longer if less energy consumption
is desired). This is the only way to ensure that all of a node’s neighbors are able to detect the preamble.
By contrast, in our protocol, the overhead for a wake-up signal is slightly longer than the time to reliably
carrier sense the channel (e.g., typically on the order of tens of microseconds) for both unicast and broadcast
packets.> Thus, the well-known overhead problem associated with broadcast storms [86] is exacerbated by
the preamble sampling protocols whereas our protocol does not add any extra overhead to broadcast packets

when compared with unicast packets.

2WiseMAC [58] does require nodes to keep track of their last communication time with each neighbor as well as the maximum
possible clock drift of the hardware.

3To do broadcast in our protocol, a dummy packet is transmitted causing all of a node’s neighbors to remain on for an ATIM
window. At this point, the transmitter can simply transmit a broadcast ATIM packet as discussed in Section 2.1.1 and follow
the standard 802.11 PSM protocol [7].

24

3.1.3 Simulation Results

See Section 4.1.3 for CS-ATIM simulation results.

3.2 Carrier Sensing for Out-of-Band protocols

In this section, we demonstrate how carrier sensing can be applied to an out-of-band power save protocol.
An advantage of this technique is that, unlike synchronous protocols, no clock synchronization is needed.
Unlike asynchronous protocols, nodes do not have to probe the channel whenever they wake up (i.e., less
channel contention and control overhead). Also, out-of-band protocols have a deterministic bound on wake-
up latency, which is not true of asynchronous protocols with non-deterministic schedules. However, tradeoffs
exist when using out-of-band protocols. One disadvantage is the increased hardware complexity and cost to
provide an extra wake-up channel. Also, the wake-up channel requires extra bandwidth to avoid interference
with the data channel. Finally, the wake-up channel must be designed such that its monitoring does not
consume much energy. Obviously, the wake-up channel is of little use, from an energy perspective, if it
consumes a large amount of energy idly listening to the channel while the data radio is saving energy by
sleeping.

STEM [2,3] and STEM-BT [3] (STEM Busy Tone) are out-of-band protocols that use periodic idle
listening on the wake-up channel. In this section, using carrier sensing, we identify ways to make each of

these protocols more efficient.

3.2.1 Protocol Descriptions

In STEM [2,3], a two-radio architecture achieves energy savings by letting the data radio sleep until com-
munication is necessary while the wake-up radio periodically listens according to a duty cycle. When a node
has data to send, it begins transmitting continuously on the wake-up channel long enough to guarantee that
all neighbors will receive the wake-up signal. STEM-BT [3] is a variant of STEM where the wake-up radio
uses a busy tone, instead of encoded data, for the wake-up signal. Both protocols are orthogonal to the data
radio MAC layer transmission scheduling scheme.

In this section, we describe the operation of STEM and STEM-BT. Based on this discussion, we make
some observations about how the protocols could achieve better energy efficiency using carrier sensing. Based
on this, we present two new protocols, STEM-H and STEM-BT2, which reduce the energy consumption for
STEM and STEM-BT, respectively. For each of the protocols, we have two sub-protocols. One is the

transmitting sub-protocol, which is performed when a node has data to send and tries to wake up the

25

Sender — - WAON
) ON
Wake-Up Fl El F| F Tows Towi
Radio e SLEEP
pp——— e
"ON"
Sender »DlA Tip,
Data Radio L : : SLEEP
Receiver —= <— AN
) ON
Wake-Up| Tows F Towi
Radio : : SLEEP
‘ —= ’67_1 "ON"
Receiver DIAk- th
Data Radio ‘ SLEEP
Neighbor —= < "ON"
Wake-Up Tws Twi
Radio SLEEP
"ON"
Neighbor
Data Radio SLEEP
Figure 3.2: STEM protocol [2,3].
T,
Sender wt —— - "ON"
Wake-Up BT Tws 1 T
Radio SLEEP
I
! -
"ON"
Sender I DIA Tin
Data Radio | SLEEP
Receiver - — < AN
ON
Wake-Up (Tws H Twi
I
. - ? ez_‘ "ON"
Receiver ! EDA th
Data Radio : SLEEP
Neighbor : —H= "ON"
Wake-Up ((Tws 1 T
Radio - SLEEP
"ON"
Neighbor > F
Data Radio SLEEP

Figure 3.3: STEM-BT protocol [3].

intended receiver. The other sub-protocol is for monitoring; typically, the nodes spend most of their time in
the monitoring state where they periodically listen to the wake-up channel to determine if a signal is being
sent and they need to wake up their data radio. In STEM and STEM-H, the wake-up radio must be able
to send and receive data packets. By contrast, in STEM-BT and STEM-BT2, the wake-up radio needs to
be able to only send and detect a busy tone (i.e., making a binary decision whether the channel is busy or
not). Figures 3.2, 3.3, 3.4, and 3.5 give a pictorial example of the protocols described below. In each of
these figures, the arrows show a “causes” relationship between events. The key for the figures is: F is a filter

packet, D is a data packet, A is an ACK packet, and BT is a busy tone. When F, D, A, or BT is in a

26

Sender
Wake-Up
Radio

Sender
Data Radio

Receiver
Wake-Up
Radio

Receiver
Data Radio

Neighbor
Wake-Up
Radio

Neighbor
Data Radio

Sender
Wake-Up
Radio

Sender

Data Radio
Receiver
Wake-Up
Radio

Receiver
Data Radio

Neighbor
Wake-Up
Radio

Neighbor
Data Radio

T "ON"
F| F| B Eb 2= [l ™[]
‘ ‘ T e SLEEP
. < " "
S : T, we? ON
— e - SLEEP
o At e = I
B B 5 . ON
11 2 e]
Fa— T — SLEEP
—_— : }efh ﬂl} s2 ”ON”
Lo DA /
o — SLEEP
< < —=
_ "ON"
1] e
i — SLEEP
Tw52 "ON"
SLEEP
Figure 3.4: Proposed STEM-H protocol.
th i
e
"ON"
BT Tws —‘ Twz
: SLEEP
—= < " "
T ON
~F F DA
- - SLEEP
M B —_— = " "
’7 Tw s H Twi ON
e hicEseremnn SLEEP
? ‘7th "ON"
’—‘ IF DIA
K : SLEEP
—_— < .
‘ : "ON"
’7 Twz ',.‘ ’7 Tws —‘
. - SLEEP
SLEEP

Figure 3.5: Proposed STEM-BT?2 protocol.

shaded area, a node is sending; otherwise, a node is receiving.

3.2.2 STEM Description [2,3] (Figure 3.2)

Sending Protocol: When a node has data to send, it begins a continuous cycle of transmitting a FILTER
packet on the wake-up channel followed by a idle listening period for the corresponding FILTER-ACK packet.
The idle listening time in between FILTERS, denoted as T4, has to be long enough to receive a FILTER-

ACK. Thus, T4 is the time to transmit a FILTER-ACK plus extra time due to factors such as propagation

delay and hardware switching time.

27

When a sender gets the corresponding FILTER-ACK, it turns on its data radio and begins sending data
packets according to the data radio MAC protocol. At this point, the sender stops sending FILTERs and the
wake-up radio enters the monitoring state. For a discussion of how wake-up channel collisions are handled,
see [2,3]. When a node with its data radio on does not send or receive packets for an idle threshold time,

Tin, it returns the data radio to sleep.

Monitoring Protocol: Nodes periodically wake up long enough to receive a FILTER and respond with a
FILTER-ACK if they are the intended receiver. After idly listening for some time, Ty,;, the node’s wake-up
radio returns to sleep for a period of time, T,,s. The Ty, value is chosen by the user. A long T, saves
more energy in the monitoring state, but increases the wake-up process latency. T,,; is a function of TF and
Ta [2].

When a node receives a FILTER and it is the intended receiver, it sends a FILTER-ACK and turns its
data radio on to idly listen for packets on the data channel. On the wake-up channel, the node continues
in the monitoring state. When a node with its data radio on does not send or receive packets for an idle

threshold time, T}, it returns the data radio to sleep.

3.2.3 STEM-BT Description [3] (Figure 3.3)

Sending Protocol: When a node has data to send in STEM-BT, it starts transmitting a busy tone on the
wake-up channel. The busy tone is sent for T,,; time, long enough to guarantee overlap with every neighbor’s
wake-up channel carrier sensing period.

After the sender has transmitted a busy tone for Ty,; time, it turns on its data radio. Once the data radio
is on, a FILTER packet is sent on the data channel indicating which receiver will receive more data. The
sender then begins transmitting the data to the receiver on the data channel. As in STEM, when a node

with its data radio on does not send or receive packets for T}, time, it returns its data radio to sleep.

Monitoring Protocol: For monitoring nodes, the protocol is similar to STEM’s. A difference between the
monitoring protocol of STEM and STEM-BT is the length of T,,;, the carrier sensing time. In STEM-BT,
Twi is shorter because a monitoring node has to only detect a busy tone. On the other hand, in STEM, the
monitoring node has to decode a packet and send a FILTER-ACK if it is the intended receiver.

When a node detects a busy tone, it turns on its data radio and idly listens for a FILTER packet on
the data channel. When the FILTER packet is received, the node remains on if it is the intended receiver.
Otherwise, its data radio returns to sleep. If a node keeps its data radio on to receive data packets, it

returns the data radio to sleep when no packet has been sent or received for T3, time. One key point about

28

STEM-BT’s monitoring protocol is that all one-hop neighbors of the sender must turn their data radio on

and idly listen until the FILTER packet is received.

3.2.4 Discussion of STEM and STEM-BT

Based on these protocol descriptions, we make a couple of observations. First, the wake-up process of STEM
is relatively inexpensive (in energy consumption) for all nodes other than the sender when compared with
the steady-state monitoring process. In particular, neighbor nodes use almost the same amount of energy
whether they are monitoring the channel or receiving the FILTER. packet.? The receiving node uses slightly
more energy because it responds with a FILTER-ACK packet. While the sender uses more energy due to
its FILTER transmissions, it transmits FILTERs for only T,:/2 time on average. By contrast, the wake-up
procedure for STEM-BT is relatively expensive compared with STEM. In STEM-BT, every neighbor node
that detects the busy tone turns its data radio on to listen for the FILTER packet on the data channel.
Thus, on average, each neighbor node idly listens to the data channel for half of the time that the busy
tone is emitted. Based on this, we can conclude that STEM-BT’s performance degrades when (1) a large
number of neighbor nodes are in the vicinity of the sender® or (2) wake-ups become more frequent (e.g., due
to a higher traffic load). STEM’s wake-up procedure, however, is relatively inexpensive and does not greatly
increase energy consumption as the size of the sender’s neighborhood increases.

The second observation is that STEM’s steady-state monitoring process is relatively expensive when
compared with STEM-BT. Since Ty,; is proportional to T and T4, it can be large for sensor networks which

tend to have a relatively low bitrate (e.g., 19.2 kbps for Mica2 Motes [25]). All nodes in the network must

Twi
Tws+Twi

spend fraction of the time idly listening even if no network traffic is present. In STEM-BT, T,,; is
significantly smaller since it is only long enough to detect if a busy tone is being emitted. In STEM-BT, T,,;
is independent of the size of FILTER and FILTER-ACK packets. Thus, the monitoring process in STEM-BT
uses much less energy than STEM. For example, as we will see in Section 3.2.8, T,; is about 80 times larger

for STEM than for STEM-BT for our simulation parameters. Thus, when the traffic load is low in a network,

STEM-BT is more energy efficient than STEM because of its low monitoring costs.

3.2.5 Proposed Protocol Description: STEM-H (Figure 3.4)

Based on the discussion in Section 3.2.4, we see that STEM’s energy consumption can be improved by

reducing the monitoring costs while retaining its relatively low wake-up cost. Thus, we propose STEM-H

4We assume the idle listening power and receiving power are about the same.
°Many applications assume that sensor networks can be rather dense for reasons such as increased reliability, connectivity,
and adequate sensing coverage.

29

(STEM Hybrid) which combines aspects of STEM and STEM-BT to create a protocol more energy efficient
than STEM. The basic idea of STEM-H is to idly listen only long enough to carrier sense whether the
wake-up channel is busy during the monitoring phase. This detection time is relatively small (e.g., similar to
STEM-BT). When the wake-up channel is carrier sensed busy, then the monitoring node leaves its wake-up

radio on to receive and decode a FILTER packet.

Sending Protocol: The sending protocol is identical to STEM’s, described in Section 3.2.2. The only

difference is in the length of T.,;, which guarantees sufficient overlap with STEM-H’s monitoring protocol.

Monitoring Protocol: For STEM-H’s monitoring state, nodes wake up only long enough to carrier sense
whether the wake-up channel is busy or idle. This differs from STEM’s monitoring protocol, where nodes
wake up long enough to receive FILTER packets and send FILTER-ACKs. STEM-H’s monitoring protocol
has two phases. In the first phase, nodes sleep for T,s time. In the second phase, nodes wake up and
periodically carrier sense the wake-up channel, then return to the first phase. This is shown in Figure 3.4,
where in between phase one periods of length T}, s, nodes probe the wake-up channel multiple times. During
the second phase, if the wake-up channel is detected as busy, a node stays on to receive the next FILTER and,
if necessary, send a FILTER-ACK. Like STEM, nodes reply with a FILTER-ACK if the FILTER is for them.
Otherwise, the node returns to its regular monitoring state. Once the FILTER/FILTER-ACK handshake
occurs, nodes follow the same procedure for turning on their data radios as described in Section 3.2.2. They
also follow the same protocol for returning their data radios to sleep. It is important to note that in STEM-H,
Twi, the carrier sensing time when probing the wake-up channel, is comparable to that of STEM-BT since
only a binary decision on the channel status is necessary. STEM, on the other hand, requires a much longer

Twi because it must completely decode packets during its idle listening period on the wake-up channel.

Discussion: STEM-H improves the energy consumption of STEM by reducing the monitoring process cost
while keeping the benefits from the relatively inexpensive wake-up process discussed in Section 3.2.4. As we
see in Section 3.2.8, STEM-H does no worse than STEM, in energy consumption, and in most environments
does significantly better. This is true even with substantial degradation from false positive detection on the
wake-up channel. Intuitively, even if every carrier sensing period results in a false positive for STEM-H,

monitoring nodes will stay on, in this worst case, about as long as STEM’s idle listening period.

30

3.2.6 Proposed Protocol Description: STEM-BT2 (Figure 3.5)

From Section 3.2.4, we see that STEM-BT’s energy consumption can be improved by reducing the wake-up
cost while retaining its relatively low monitoring cost. Thus, we propose STEM-BT?2 to augment STEM-BT’s
wake-up protocol with data channel probing for improved energy efficiency. The basic idea of STEM-BT2
is to perform the same wake-up protocol as STEM-BT while avoiding excessive idle listening on the data
channel while waiting for the FILTER packet to be sent. Rather than turning on the data radio and doing
continuous idle listening like STEM-BT, STEM-BT2 will periodically carrier sense the data channel to detect
whether it is busy or not. When the data channel is detected busy, then STEM-BT2 remains on to receive
the FILTER packet like STEM-BT.

Sending Protocol: The sending protocol is nearly identical to that of STEM-BT described in Sec-
tion 3.2.3. The only difference is that two FILTER packets are sent on the data channel rather than
one. The first FILTER packet is a “dummy” packet that allows probing nodes to detect the channel as busy

and the second packet is the one that actually gets decoded.

Monitoring Protocol: The monitoring cycle is the same as STEM-BT. The difference in STEM-BT and
STEM-BT?2 is the reaction after a monitoring node detects a wake-up channel busy tone. STEM-BT’s
protocol is described in Section 3.2.3. STEM-BT2 reacts by turning on its data radio and carrier sensing for
Tyi time.% If the data channel is detected as busy, the data radio remains on in anticipation of receiving a
FILTER packet. If the data channel is detected as idle, the data radio returns to sleep for T2 time before
attempting to sense again. This cycle continues until either the channel is detected busy or a timeout occurs.

Once the FILTER packet has been received, nodes behave the same as in STEM-BT. The intended
receiver, as specified by the FILTER packet, remains on while all other nodes return their data radios to
sleep. The sender and receiver return their data radios to sleep when the data channel has been idle for T3,

time.

Discussion: STEM-BT2 improves the energy consumption of STEM-BT by reducing the cost of the expen-
sive wake-up process while maintaining the benefits from the relatively inexpensive steady-state monitoring
process discussed in Section 3.2.4. As we see in Section 3.2.8, STEM-BT?2 rarely does worse than STEM-BT,
in terms of energy consumption, and in most environments does significantly better. This is true even with

significant degradation due to false positives (i.e., carrier sensing the channel busy when it is idle) being

6More generally, the carrier sensing time for the data radio and wake-up radio can be T2 and Ty, respectively, where
Twiz # Twi-

31

detected on the data channel. Intuitively, in the worst case, where every carrier sensing period on the data
radio detects the channel as busy, STEM-BT2 will behave identical to STEM-BT except that it sends two
FILTER packets instead of one. Thus, in this case, STEM-BT2 uses extra energy to transmit the extra
FILTER packet, but otherwise behaves the same as STEM-BT.

3.2.7 Parameter Values

In this section, we discuss the values needed for the T.,;, Twt, Tws2 parameters described in Section 3.2.1.
The values for STEM and STEM-BT were discussed previously in [2, 3], but we mention them here for

completeness.

STEM: The idle listening period, T.,;, must be long enough that a node will successfully receive a FILTER
packet even if the node wakes up in the middle of a FILTER transmission (and hence cannot correctly decode
the first FILTER packet). In the worst case, the node wakes up just after a FILTER transmission has begun.
Thus, the node has to wait for this first, undecodable FILTER packet to finish, which takes about T time.
It then must wait for the sender to idly listen for a FILTER-ACK, which takes oT4 time, where o accounts
for propagation delays and hardware switching time. Finally, it must stay on long enough to receive the next
FILTER packet, which takes Tr time. Thus, T\; = Tr + aTs + Tp = 2TF + oT 4.

Now, we discuss T, the duration for which the sending protocol must be performed to ensure enough
overlap that every neighbor doing the monitoring protocol will receive a FILTER and have time to respond
with the FILTER-ACK, if necessary. In the worst case, a monitoring node’s idle listening period ends just
before the sender’s first FILTER transmission ends, which takes T time. The sender must continue the
process for T, time since the monitoring node will be asleep for that duration. When the monitoring node
begins idly listening again, it may wake up just after a FILTER transmission began (T time). After the
sending node idly listens for aT'4 time, it sends another FILTER packet (Tr time) which will successfully
be decoded by the receiver. Finally, the sending node must wait long enough to receive the corresponding
FILTER-ACK, if necessary, which takes aT4 time. Thus, summing up the terms mentioned in this paragraph,

we get: Tyt =Tr + Tws +Tr +aTa +Tr 4+ aTa =3Tr + Tys + 20T 4.

STEM-BT: In STEM-BT, T,; is a fixed value based on how long the radio must listen to detect a busy
tone with a specified level of confidence (see [56] for a discussion on this). The busy tone transmission
time, T,,¢, must be sufficiently long to ensure enough overlap such that every neighbor doing the monitoring
protocol receives the busy tone. In the worst case, a monitoring node’s idle listening period begins just before

the sender starts transmitting the busy tone. In this situation, the busy tone is not detected at the specified

32

level of confidence. Thus, the sending node must transmit the busy tone long enough that the monitoring
node’s next idle listening period will completely overlap with the busy tone. Thus, Tyt = Tyi + Tws + Twi =
2T i + Tws-

STEM-H: We begin by determining T,,s2 and w;, the sleeping time between idle listening periods and
the number of idle listening period required to guarantee a FILTER is detected, respectively. To determine
the frequency and number of times a nodes must wake-up during the monitoring periods, we observe the
following constraint. If a node begins its idle listening period after the sender has started its FILTER packet
transmissions, T,s2 and w; must be chosen to guarantee at least one of the T,,; duration wake-ups will
completely overlap with one of the sender’s FILTER transmissions. Similar to STEM-BT, we assume that
T is the minimum amount of time required to classify the wake-up channel as busy (with sufficiently low
error probability). Thus, if a FILTER packet only partially overlaps with a Ty,; period, the channel may not
be detected as busy.

In the worst case, a wake-up idle listening period begins just before a FILTER transmission begins. For
example, the listening period begins at time ¢ty and the FILTER transmission begins at t; = ¢y + €, where €
is a small positive number close to zero. In this case, tg + Twi < t1 4+ Twi, which means that the FILTER
transmission will not be detected for T,,;, the minimum required time for correct detection. Thus, T, s
needs to be chosen such that the next idle listening period will begin and end before the current FILTER
transmission ends. The FILTER transmission will end at t; + TF. Thus, the next idle listening period needs
to begin by t1 + Tpr — Toyi = to + €+ Tr — Ty, to allow the minimum detection time. The first idle listening
period ended at tg + Ti,;. Thus, subtracting the first idle listening period’s end time from the second idle
listening period’s start time, we get: (tg + € + Tr — Twi) — (to + Twi) = Tr — 2Ty + €. Thus, we need:
Twso <Tp —2T,,; + €. Because ¢ — 0 and the T,,s> inequality must be valid for the smallest ¢ possible, we
get:” Tyeo < Tr — 2T, to ensure that the second idle listening period completely overlaps with part of the

FILTER packet transmission. To avoid unnecessary wake-ups, we set:3

Tws2 = TF - 2Twz (31)

Next, we consider w;, the number of times these idle listening periods must occur on the wake-up radio to

ensure that one overlaps with an adequate part of a FILTER packet transmission. This is necessary since the

"It is assumed that T > 2T,;. If this is not true, then it is impossible to guarantee sufficient overlap between the FILTER
and carrier sensing periods without synchronizing the boundaries of Tr and T;.

8If false negatives are a problem with detecting the wake-up channel busy, Tws2 and w; could be adjusted to provide
redundancy in the amount of times idle listening periods are guaranteed to overlap with FILTER packet transmission. The
obvious tradeoff is that more energy is consumed during the monitoring phase as Tyys2 becomes smaller and w; becomes larger.

33

idle listening periods may occur during the aT4 time that the sender is idly listening for a FILTER-ACK.
We assume that T, is set according to Equation 3.1.

In the worst case, the first wake-up idle listening period ends just after a FILTER transmission ends. For
example, the FILTER packet transmission ends at ¢; and the first idle listening period ends at to = ¢t + €.
Thus, that idle listening period began at tg = to — Ty;. In this case, to + Tiy; > t1, which means that the
FILTER transmission will not be detected for T,,;, the minimum time required for correct detection. After
this most recent FILTER transmission, the sender will wait for aT4 time before beginning the next FILTER
transmission (i.e., it begins at t1 + aT4). We need to guarantee that enough idle listening periods with the
Tws2 spacing will occur such that the last one begins at or after t; + aT4 (and hence is detects the next
FILTER transmission). The next (second) idle listening period begins at t3 + Tyso. If another one occurs
(the third), it will begin at to + Tys2 + Twi + Tws2- If we have w; such idle listening periods, the last one
will begin at to + (w; — 1)Tws2 + (w; — 2)Tw; (trivially, w; > 2). Using Equation 3.1, the last idle listening

period begins at: to + (w; — 1)(Tr — 2T0w:) + (w; — 2)Twi = ta + (w; — 1)Tr — w;Ty;. Thus, we need:

t1+aTy <to+ (w; — 1)Tr —w; Ty,
ti+aTa <ti+ e+ (w; — 1)Tp — w;Twi (3:2)

aTy < e+ (w;— 1)Tr — w;Tw;

Because € — 0 and the inequality in Equation 3.2 must be valid for the smallest € possible, we get:

aTy < (w; = D)Tp — w; Ty, (3.3)

Therefore, we need w; to be the smallest integer which satisfies the inequality in Equation 3.3. This gives
us:

wi= | S (3.9

Tr — Twi

To determine T, we consider the worst case where the first FILTER transmission starts just after the
last idle listening period begins for a monitoring node (i.e., just before the last idle period of length T,
returns to sleep for T, time). In this case, the sender has to do the wake-up procedure for the length
of that idle listening period (i.e., Ty,;) plus the subsequent sleeping time (i.e., T\ys). Additionally, it must
transmit for the time it takes the monitoring node to do w; idle listening periods (i.e., w; Tyi + (w; — 1) Tys2)-
Recall that Ti,s5 and w; were set in Equation 3.1 and Equation 3.4, respectively, to ensure that the channel

is carrier sensed busy during one of these w; idle listening periods. Thus, in the worst case, the beginning

34

of the FILTER transmission is detected during the monitoring node’s last idle listening period. Thus, the
monitoring node will keep its wake-up radio on to receive the nert FILTER. The next FILTER transmission
occurs after the sender idly listens for a FILTER-ACK. In this case, the time needed is enough to detect
(but not correctly receive) the first FILTER packet, then wait for the transmitter to listen for the FILTER-
ACK, and then for the monitoring node to receive the next FILTER packet send by the transmitter (i.e.,
2Tr+aT4). Finally, the sender must continue the wake-up process long enough to receive the FILTER-ACK

which follows the last FILTER transmission (i.e., aT4). Combining all this time, we get:

T’wt = T’wi + Tws + wiTwi + (wz - 1)Tws2 + 20(TA + 2T‘F
(3.5)

= (w; + DTwi + Tws + (w; — 1)Tyso + 2aT4 + 2Tk
STEM-BT2: The value of T,,; in STEM-BT2 is computed exactly the same as for STEM-BT, as described

previously. We set Ty,s0 = Tp — 2T,,; for the same reasons discussed for STEM-H.

3.2.8 Simulation Results

To test the protocols from Section 3.2.1, we implemented them by modifying the 802.11 MAC and physical
layer code in ns-2 [103]. We use the values from Table 3.3. These values are based on Mica2 Motes [104]
and TinyOS [11]. For STEM-BT, STEM-H, and STEM-BT2, we set T,,; = 1ms [56]. This is the time it
takes to reliably detect that the wake-up and data channel are busy when a busy tone or packet is being
transmitted.® Each data point is averaged over 20 runs. The standard deviation for the figures is given in

Table 3.1 and Table 3.2.

Table 3.1: Standard deviation as percentage of mean for Section 3.2.8 figures (Average | Maximum).

| || Fig. 3.6 | Fig. 3.7 | Fig. 3.9 | Fig. 3.12 | Fig. 3.13 | Fig. 3.14a|
STEM 3.54 | 399 | 2.18 | 2.90 | 2.096 | 2.628 | 1.00 | 1.00 | 1.60 | 2.58 | 1.93 | 3.18
STEM-BT || 1.90 | 2.61 | 1.08 | 1.50 | 1.96 | 2.76 | 0.44 | 1.43 | 20.10 | 24.57 | 0.53 | 0.80
STEM-H 227 | 286 | 1.61 | 2.57 | 1.84 | 245 | 1.59 | 15.87 | 18.63 | 22.04 | 1.92 | 3.13
STEM-BT2 || 1.84 | 2.41 | 1.13 | 1.52 | 1.64 | 2.28 | 0.37 | 0.84 | 21.34 | 24.14 | 0.83 | 1.36

2 In Figure 3.14, STEM-BT, STEM-H, and STEM-BT2 all have 50% false positive probabilities.

Initially, we look at a single-hop scenario with 10 sensors in range of each other. A random sender and
receiver are chosen to communicate with Poisson traffic at a fixed rate of one packet per second (unless

otherwise noted). Each simulation runs for 500 seconds. Because each data packet has a corresponding ACK

9While we do not explicitly consider switching energy and delay, T.,; can be adjusted to this cost into account. We note
that radios on earlier versions of Mica Motes had transition times of less than 10 us [105].

35

Table 3.2: Standard deviation as percentage of mean for Section 3.2.8 figures with false positive curves
(Average | Maximum).

| || Figure 3.10 | Figure 3.11 |

STEM 3.66 | 4.04 | — —
STEM-H, 0% 217 | 2.95 | — —
STEM-H, 1% 231 | 3.17 | — —
STEM-H, 5% 277 | 371 | — —
STEM-H, 50% || 3.87 | 4.98 | — —
STEM-H, 100% || 3.71 | 472 | — —

STEM-BT, 0% — — 0.31 1.10
STEM-BT?2, 0% — — 0.09 0.16
STEM-BT, 5% — — 0.79 1.09
STEM-BT?2, 5% — — 0.91 1.29
STEM-BT, 50% — — 0.40 0.69
STEM-BT2, 50% — — 0.42 0.58
STEM-BT, 95% — — 0.44 0.87
STEM-BT2, 95% — — 0.47 1.12

Table 3.3: Protocol parameter values.

Parameter Value
Physical Layer Header | 28 bytes
MAC Layer Header 6 bytes
Payload per Packet 30 bytes
Total Packet Size® 64 bytes

Bitrate 19.2 kbps
PTX 81mW
P] 30mW
PS 3 ,LLW
Tin 30 ms

& We assume that FILTER, FILTER-
ACK, data, and ACK packets are the

same size.

packet, 128 bytes (see Table 3.3) are transferred per data packet. This translates to a 5.33% utilization of
the channel bitrate. The sleep interval, T,,s, for the protocols is varied to determine its effects on energy and
latency. The goal of these experiments is to investigate properties of the protocols in a simple environment.

We also evaluate performance in a more realistic, multi-hop scenario. We define the node density of a

network, A, as A = N'XT2, where N is the number of nodes in the network, r is the range of a node’s radios,

and A is the geographic area of the network. Given this definition, we place 50 sensor nodes uniformly at
random in a square region such that A =~ 9.8. For each topology tested, a path exists between every node

in the network. We vary the number of connections per scenario while keeping T,,s and the Poisson traffic

36

0.0008 ————1—1—— -
S STEM -+
0.0007 + “+ STEM-BT —<— 4
e, STEM-H %
L STEM-BT2 --5--
0.0006 e,
Tk
= 0.0005 |- L i
@ .
2 S
3 0.0004 g,
3
- 0.0003 _
0.0002 6553 S S 2 XE % vy]
: =8 0800008068085 854H
0.0001 E 80 8-5-8-0-8 i
1 1 1 1]]]] |

0
60 80 100 120 140 160 180 200 220 240 260
Sleep Interval (ms)

Figure 3.6: Energy consumption of the protocols.

rate fixed. For each connection the sender and receiver of the flow is chosen uniformly at random. For the
sensor network application at Great Duck Island [106], the traffic rate is one data packet every 70 seconds.
To keep our simulation execution times reasonable, the traffic rate per flow is set to be one data packet every

20 seconds and each simulation runs for 1000 seconds.

Energy and Latency Comparison: We adjust Ty,s from 60ms to 250 ms to see the performance of the
protocols, shown in Figure 3.6. The energy metric we use is Joules per bit, which is the aggregate energy used
by all nodes during the simulation divided by the total number of data bits received by the destination(s).

The simulation results are presented in Figure 3.6. We see that STEM uses the most energy of the
protocols, but shows a large improvement as T, increases. Recall that STEM’s major weakness is its large
energy cost to monitor the wake-up channel in steady-state. As T, increases, the relative amount of sleep
time for the monitoring process increases. Thus, the monitoring process uses less energy while the wake-up
process uses only slightly more energy (due to the increase in Ty, for the sender). STEM-H consistently
does much better than STEM. STEM-H’s energy consumption also decreases as Ty, increases, though it is
much less dramatic than STEM’s decrease.

Figure 3.6 also shows that STEM-BT?2 consistently outperforms STEM-BT. Both STEM-BT and STEM-
BT2 show the same trend, a linear increase in energy consumption as Ty, increases. This is because the
wake-up cost for these protocols increases while the monitoring cost decreases only slightly. In particular,
the busy tone is transmitted for a longer time and, hence, neighbors have to keep their data radios idly

listening (or probing) for a longer period of time on average.

37

In Figure 3.7, we see a linear increase in latency for all protocols as T, increases. This is because
the wake-up process takes longer as Ty,s grows. STEM and STEM-H show a more gradual increase in
latency because the time of their wake-up processes are proportional to roughly %Tws, whereas STEM-BT
and STEM-BT2’s wake-up processes are proportional to Ty,;. We also note that STEM-H and STEM-BT2
have a latency that is larger than that of STEM and STEM-BT, respectively, by a constant amount. This
constant amount is approximately equal to Tr since STEM-H has to wait for an extra FILTER to be sent
on the wake-up channel (when compared with STEM) and STEM-BT2 has to wait for an extra FILTER to

be sent on the data channel (when compared with STEM-BT).

300

'STEM — + =
STEM-BT —x—
250 | STEM-H -

STEM-BT2 —-&-- s
200 K
2 180 - .
100 £ -
50 -

0 | | | | | | | | |
60 80 100 120 140 160 180 200 220 240 260
Sleep Interval (ms)

Figure 3.7: Latency of the protocols.

To gain a better understanding of the energy-latency tradeoff for the protocols, we plot the average
latency versus the energy consumption for each fixed 73,5 value. The result is shown in Figure 3.8. We can
see that STEM-BT?2 outperforms all of the other protocols in this metric. However, we notice that STEM-BT
and STEM-BT2 show an increase in energy consumption as latency increases while STEM and STEM-H
show a decrease in energy consumption. Thus, comparing the energy of STEM-H to that of STEM-BT when
the average latency is about 220ms is misleading because STEM-H has lower energy consumption at that
point, but STEM-BT has lower energy consumption when the average latency is smaller.

In Figure 3.9, we test the protocols at a higher sending rate. The rate is set to three packets per second
(i.e., 16% channel utilization). From this graph, we see that the relative difference in energy consumption
between STEM and STEM-H decreases. This is because a higher rate reduces the amount of monitoring
time between wake-up procedures. Thus, STEM does better at higher data rates due to less monitoring time

per packet arrival. STEM-H, however, shows less relative improvement since its monitoring cost is already

38

0.0008 I T T T T T
y STEM ---+---
0.0007 * STEM-BT —x—
‘+\% STEM-H %
00006 | \+\+ STEM'BT2 ——B--
3+
.
= 0.0005 T, _
Qa **+~+
3 0.0004 ey -
3
— 0.0003 | -
0.0002 - _
0.0001 - -
O | | | | | | | | |
100 120 140 160 180 200 220 240 260 280 300
Average Data Packet Latency (ms)
Figure 3.8: Energy versus average latency.
low by design.
0.0003 I T T T T T T | T T
Ty STEM ---+---
e STEM-BT —x—
0.00025 e STEM-H - o
T STEM-BT2 --&-
g
0.0002 |- T T
5 \+-+;+"+“+-—+~.+
[%2])
o 0.00015 R _
3 T3
0.0001 E_E—B-gfaﬂ—aﬂ—a&ﬁ{kE' o= R = SO
5e-05 | -
0 | | | | | | | | |

60 80 100 120 140 160 180 200 220 240 260
Sleep Interval (ms)

Figure 3.9: Energy consumption at a higher rate.

Also in Figure 3.9, we see that the relative difference between STEM-BT and STEM-BT2 increases at
a higher rate. This is because, at a higher rate, the wake-up procedure becomes more frequent. Thus,

STEM-BT2, which has a lower wake-up cost than STEM-BT, will further outperform STEM-BT.

The Effects of Spurious Wake-Ups: One of the disadvantages of doing the FILTER transmission
detection on the wake-up channel in STEM-H is that interference in the frequency band may cause a node to

detect the channel as busy when no FILTER is being transmitted. For example, such interference may come

39

from other sensor nodes that are not within communication range, but still transmit with enough power
to interfere. Another example of interference is other electronic devices that share the same unlicensed
bandwidth as the sensors. Thus, we study how the performance of STEM-H degrades in the face of such
interference.

Figure 3.10 shows the energy consumption of STEM and STEM-H. For STEM-H, we vary the probability
that when a monitoring node idly listens on the wake-up channel, it erroneously detects a FILTER transmis-
sion (i.e., a false positive). For STEM-H, the percentage values shown in the key of Figure 3.10 indicate the
probability a false positive occurs each carrier sensing period. For example, “STEM-H, 5%” indicates that
each idle listening period on the wake-up channel a monitoring node falsely detects a FILTER transmission
with probability 0.05. Thus, 0% false postive value indicates that every detection of the wake-up channel as
busy is caused by a FILTER transmission. A 100% false positive value is the worst case where every carrier

sensing period a monitoring node detects the wake-up channel as busy regardless of its actual state.

0.0009 — R
STEM -+
0.0008 51 STEM-H, 0% -~ -
STEM-H, 1% -
0.0007 & " Q. STEM-H, 5% & -
'1 3. STEM-H, 50% --®--
0.0006 - Qg STEM-H, 100% ---&-
= o e,
Q) L "u -m__ TP _
2 0.0005 - T g, o
3 0.0004 - "Ealeee
0.0008 . S -
zg Baeg. - E‘MB"E'"'D"'E"'B---B--»Brr -
0.0002 F-5 3334 038 36 e XK %% k- - KR F]
0.0001 4
0 | | | | | | | | |

60 80 100 120 140 160 180 200 220 240 260
Sleep Interval (ms)

Figure 3.10: Effects of false positives on STEM-H.

From Figure 3.10, we see that a low false positive percentage (e.g., less than 5%) does not affect the
performance of STEM-H much and it still significantly outperforms STEM. As the false positive percentage
increase, the performance of STEM-H converges to that of STEM (the line for STEM and STEM-H with
100% false positives almost overlaps). This confirms the intuition discussed in Section 3.2.5. Thus, with
completely unreliable FILTER transmission detection, STEM-H does no worse than STEM.

We do similar tests with STEM-BT and STEM-BT2. In STEM-BT, false positives affect the detection
of busy tones on the wake-up channel. In STEM-BT2, false positives affect both the detection of busy tones

on the wake-up channel and the detection of FILTER packets on the data channel. Figure 3.11 shows the

40

results. At a low false positive percentage (i.e., 0% and 5%), STEM-BT2 saves more energy than STEM-
BT because the benefits from data channel carrier sensing are significant. However, as the false positive
percentage becomes large (i.e., 50% and 95%), the performances of STEM-BT and STEM-BT2 converge
since both protocols are using a large amount of energy on the wake-up channel. In this situation, STEM-
BT2’s data channel carrier sensing will exhibit similar behavior to STEM-BT’s data channel idle listening
since the false positives from carrier sensing cause STEM-BT?2 to frequently resort to idle listening.

00014 — —
0.0012 L ¢ ¢-0-6-0-6060066060606006000_

0.001 -
00008 8 A BN EEmE-E"SEESEaEE"
0.0006
0.0004
0.0002 X

0

Joules/Bit

60 80 100 120 140 160 180 200 220 240 260
Sleep Interval (ms)

STEM-BT, 0% —+— STEM-BT, 50% --®-
STEM-BT2, 0% ---x--- STEM-BT2, 50% ---o -
STEM-BT, 5% ---*--- STEM-BT, 95% ----e---
STEM-BT2, 5% & STEM-BT2, 95% -4 -~

Figure 3.11: Effects of false positives on STEM-BT and STEM-BT2.

Our final experiment to test spurious wake-ups investigates the relation between the false positive per-
centage and energy consumption. In Figure 3.12, we fix T}, = 100 ms and see that only at low percentages
does STEM-H perform worse that STEM-BT. This is because carrier sensing occurs more frequently for
STEM-BT than for STEM-H and, thus, shows more degradation as a higher percentage of carrier sensing
periods detect false positives. STEM-BT2 also outperforms STEM-BT at low percentages, and their perfor-
mance converges at high percentages. STEM is not affected by spurious wake-ups; its performance is shown

for reference relative to the other protocols.

Multi-Hop Performance: We tested the protocols in multi-hop, multi-flow environments. We note that
this is the first time, of which we are aware, that such tests have been done on STEM or STEM-BT. In [2,3],
the simulation results are limited in that they consider only a single flow.

In Figure 3.13, we set T,,s = 100ms and incrementally increase the number of concurrent flows in the
network. At the low rate of one packet every 20 seconds, STEM does much worse than the other protocols

for reasons discussed in Section 3.2.4. The performance of STEM-BT and STEM-BT2 is almost identical

41

0.0014 T T T T T T T T

STEM — + -

STEMH % -

0.0012 | gTEM-BT —
STEM-BT2 - & -

0.001

Joules/Bit

0 1 1 1 1 1 1 1 1 1
0 01 02 03 04 05 06 0.7 0.8 09 1

False Positive Probability

Figure 3.12: Effects of false positives on protocols.

since wake-ups are rare. STEM-H does slightly worse than STEM-BT and STEM-BT2 because, as shown
in Figure 3.4, STEM-H has a higher monitoring cost since it must wake up multiple times in between sleep

intervals.

0.06 T T T . | | |
1 STEM -+
STEM-BT —=—
0.05 |- STEM-H % -
k STEM-BT2 --5--
0.04 | -
3 i -
8 oo3p
o .
el .
0.02 - e i
— |
0.01 | A

53
i
|::3

] ek
1 2 3 4 5 6 7 8 9 10
Number of Connections

Figure 3.13: Multi-hop energy consumption.

From Figure 3.13, one could conclude that the busy tone protocols are always superior to STEM and
STEM-H. However, STEM-BT and STEM-BT2 rely heavily on carrier sensing and are, therefore, more
susceptible to the effects of spurious wake-ups. In contrast, STEM is unaffected by false positives since no
carrier sensing is needed to determine when the radios should remain on. STEM-H shows some effects from

spurious wake-ups, but as shown in Figure 3.12, large false positive percentages are not as detrimental as

42

they are for STEM-BT and STEM-BT2. Thus, in Figure 3.14, we see that STEM and STEM-H outperform
STEM-BT and STEM-BT2 when the sensors operate in an environment where spurious wake-ups are a

significant problem.

T T T
STEM -+ -
STEM-BT, 50% ---x
STEM-H, 50% -~ -
STEM-BT2, 50% -

5]

Joules/Bit

1 2 3 4 5 6 7 8 9 10
Number of Connections

Figure 3.14: Multi-hop energy consumption with false positives.

3.3 Summary

In this chapter, we have proposed and demonstrated two methods where carrier sensing at the physical
layer can reduce the energy consumption of power save protocols. The technique significantly reduces the
energy spent listening for wake-up signals. We have shown how this can be applied to both an in-band
protocol, IEEE 802.11 PSM [7], (Section 3.1.1) and an out-of-band protocol, STEM [2, 3], (Section 3.2.1).

This technique is particularly beneficial when traffic is light and, most of the time, no packets need to be

advertised.

43

Chapter 4

Adaptive Energy-Saving Protocols

Many power save protocols use a similar design where nodes sleep for some fixed interval and, at the end
of that interval, wake up for a fixed listening interval to check for wake-up signals. This design is used in
802.11 PSM [7] as well as sensor network protocols, such as B-MAC [26] and STEM [2]. As discussed in
Section 2.1.3, the disadvantage of such an approach is that is results in a “one size fits all” protocol that is
agnostic of the traffic rate in the network or desired latency of an application, for example.

In this chapter we propose adaptive techniques to improve the energy efficiency of in-band power save
protocols. Our previous work [27-29] has looked at adaptive intervals for out-of-band protocols. In Sec-
tion 4.1, we propose dynamic listening intervals based on the traffic near a node. In Section 4.2, we explore

dynamic sleeping intervals based on the desired latency requirements of an application.

4.1 Dynamic Advertisement Windows

From the description of 802.11 PSM in Section 2, we can see that the ATIM window wastes a significant
amount of energy when the traffic load is low. For example, in previous work [60,68] some typical values
for the ATIM window and beacon interval are 20 ms and 100 ms, respectively. Thus, even when no traffic is
being sent, nodes listen to the channel for 20% of the time. It is obvious that more energy could be conserved
by reducing the size of the ATIM window when traffic is sparse. However, if the ATIM window becomes
too small, then nodes cannot advertise their data since the window ends before they are able to access the
channel and send an ATIM. Thus, our techniques reduce the overhead of the ATTM window when traffic is
sparse and provide larger ATIM windows when more data needs to be advertise.

The major contribution of this work is that we dynamically re-size the ATIM window based on the

number of advertisements to be sent in the current window. While the dynamic adjustment of the ATIM

44

window has been explored previously [60,107], this is the first work of which we are aware that achieves this

in a multi-hop environment using a single channel.

4.1.1 Protocol Description

The CS-ATIM protocol discussed in Chapter 3 is more energy efficient than 802.11 PSM when there are a
large number of beacon intervals in which no nodes have packets to advertise. However, if a small number
of packets need to be advertised in a beacon interval, then requiring nodes to listen for the entire ATIM
window wastes energy. Ideally, the ATIM window should be long enough for all the ATIMs that need to
be transmitted and then the ATIM window should end right after the last ATIM-ACK is received.! This
is what past work tries to achieve either through heuristics [60] or dynamically extending the window when
packets are received [61,107]. Unlike the previous work that dynamically extends the ATIM window based
on packet reception, our goal is to have a protocol that works in multi-hop environments and does not use
a second channel (e.g., a busy-tone channel). We refer to this extension of CS-ATIM as Dynamic CS-ATIM
(DCS-ATIM).

First, we distinguish between two types of packet reception in IEEE 802.11. When a packet is received
at a power level above the RX_.THRESHOLD, we say that the receiver is within the transmission range
of the sender. When a packet is received at a power level below the RX_THRESHOLD, but above the
CS_THRESHOLD (carrier sense threshold), the receiver is said to be within the carrier sensing range of the
sender. Packets received by nodes in the carrier sensing range cannot be decoded, but do cause the node’s
clear channel assessment to classify the channel as busy. We assume that, most of the time, a node’s carrier
sensing range is at least twice as big as its transmission range [108]. Thus, when S sends a packet and R is
within the transmission range of S, the nodes within the transmission range of R are likely to be within the
carrier sensing range of S.

We note that in several cases a node may receive a packet above the RX_THRESHOLD, but its neigh-
bors do not receive the packet above the CS_.THRESHOLD. This may occur due to short-term fading or
obstructions in the line-of-sight of a node pair. While DCS-ATIM can recover from such occurrences, we
assume such events are rare.? In the worst case, when a node detects little or no correlation between its
packet receptions and a neighbor’s carrier sensing of these packets, then the node can fall back to CS-ATIM
to advertise packets to that neighbor.

In DCS-ATIM, two carrier sensing periods follow the beginning of the beacon interval:

1This statement assumes traffic is not so heavy that the ATIM window grows large enough that data packets can never be
sent.
2We do not test these situations in our simulations.

45

e CS;: As in CS-ATIM, DCS-ATIM begins with a carrier sensing period of length T, during which
time nodes use the protocol from Section 4.1.1 to indicate whether they have packets to advertise. We

refer to this carrier sensing interval as CS;.

e CS,y: DCS-ATIM adds a second carrier sensing period, CSa, (of duration T¢s) that immediately follows
CS;. If a node wants its neighbors to use a static ATIM window, as in CS-ATIM, then it transmits
a dummy packet during CSy. Otherwise, its neighbors use the dynamic window scheme described
below. For example, a node may use a static ATIM window if it has not been able to advertise a
packet for the past k intervals. This is a fail-safe mechanism when a packet is unable to be advertised

after attempting for several dynamic windows.

We now describe the protocol after the above two carrier sensing periods when nodes have decided
to use dynamic ATIM windows. First, we give ATIM packets a different maximum contention window
size (CWay) than data packets (CWinas). In the IEEE 802.11 specification [7] for direct-sequence spread
spectrum (DSSS), the default CW,,4, is 1023 slots and the default slot time, Tyjot, is 20 us. Using such a
large contention window for ATIMs is unnecessary when the entire ATIM window is typically on the order of
tens of milliseconds. Also, only one ATIM is sent per sender-receiver pair whereas multiple data packets may
then be sent over that link after the ATIM window. Thus, the number of ATIM packets sent in the ATIM
window should be less than or equal to the number of data packets sent following the ATIM window. This
means there should be less nodes contending for access during the ATIM window since each sender-receiver
link contends for the channel only once during the ATIM phase, but potentially multiple times during the
data phase. Therefore, it is not unreasonable to make CW,,, < CW,4, in most scenarios. Thus, nodes that
have ATIMs to send during the ATIM phase use the same protocol as 802.11 CSMA/CA, but use CW,,, as
the maximum contention window size rather than the default CW,, 4. -

At the start of the dynamic ATIM window, every node listens to the channel and sets a timer to expire

after:

Edle = DIFS + Tslot : CWaw + Propmax
+ Tatim + STEFS + propmas + Tuck (41)

4+ DIFS 4 Tyt - CWoao + Propmas

where DIF'S and STFS are the DCF and Short Interframe Space as specified by IEEE 802.11 [7], respectively.

The values T,zim and T,er are the time durations required to send an ATIM and ATIM-ACK, respectively.?

3Twtim and Tyep are constant since ATIM and ATIM-ACK packets have a fixed, specified size.

46

The maximum propagation delay between two nodes is denoted as propmaz. Tidie is long enough to give a
node the chance to access the channel after it was in the carrier sensing, but not transmission range, of an
ATIM/ATIM-ACK handshake.

If a node sends or carrier senses a packet before the timer expires, the timer is reset to end Tj4 time
after the packet is sent or carrier sensed. To avoid starvation, an upper limit is set on the size that the
dynamic ATIM window can reach. We set this upper bound equal to the default, static ATIM window size,
Tuw, used for unmodified 802.11 PSM.

A node may transmit ATIM packets as long as it has sent a packet or received a packet above the
RX_THRESHOLD within the past T;4 time. When one of these two conditions is met, it implies that the
node’s neighbors have either received or carrier sensed a packet within the past T4 interval and, hence,
refreshed their timers to continue listening for ATIM packets. If a node has carrier sensed a packet within
the past T;qie time, but not sent or received a packet during that time, then it must continue to listen for
ATIMs until its timer expires, but it cannot send anymore ATIMs until the next beacon interval. If a node
is unable to send an ATIM for k consecutive intervals, it uses CS; to let its neighbors know to resort to a
static ATTM window size.

Whenever a node does not send or carrier sense a data packet for T;4 time, or the upper bound on the
dynamic ATIM window is reached, the node ends the ATIM phase and waits for the data phase to begin.
As in 802.11 PSM, if a node sent or received an ATIM during the ATIM window, it remains on for data
communications. Otherwise, the node returns to sleep until the beginning of the next beacon interval. The
data phase begins T, after the start of the ATIM window. It is postponed until this time to avoid sending
potentially long data packets while other neighbors are trying to transmit ATIMs.

An example of DCS-ATIM compared with 802.11 PSM is given in Figure 4.1. First, DCS-ATIM has
an additional carrier sensing period at the beginning of the beacon interval. Because A has a packet to
advertise, it sends a dummy packet at the start of the beacon interval. In this example, A desires a dynamic
ATIM window, so no dummy packet is sent during the second carrier sensing period. After both carrier
sensing periods have ended, A sends an ATIM to B. In this example, C does not carrier sense anymore
transmissions after B’s ATIM-ACK. Thus, with DCS-ATIM, C returns to sleep Tjq time after receiving
the ATIM-ACK rather than waiting for the entire T,,, duration of the ATIM window. With 802.11 PSM,
C must remain on for the entire Ty, time of the static ATIM window.

From this description, we see that, in the worst case, the ATIM window for DCS-ATIM uses only slightly
more energy in the ATIM window than 802.11 PSM (for the carrier sensing periods) and may use much less

energy when a small number of ATIMs are sent. In terms of latency, DCS-ATIM may perform worse than

47

802.11 PSM DCS-ATIM

1 Tau) 1 ! Taw !
| : j ‘ : "ONH
A’s 1 . 3
Radio Status - | SLEEP
A < Y] ‘ T]
2| | B[= =] M
> O | < O S Q X < @)
< | < al | < <| |=Z 'l =
Y R | . ¥ i Ly HONH
B’s J 3 J K } 3
Radio Status B SLEEP
* « Tidgie |
! ! ! : nONn
oS J T ‘ SLEEP

Radio Status - ‘

Figure 4.1: 802.11 PSM vs. DCS-ATIM.

802.11 PSM if a data packet arrives at the node towards the end of 802.11 PSM’s static ATIM window. In
this case, 802.11 PSM can advertise the packet and send the data in the current beacon interval. By contrast,
if DCS-ATIM’s dynamic ATIM window has already ended, the node may wait until the next beacon interval
to advertise the packet. Additionally, DCS-ATIM may not be able to advertise as many packets as 802.11
PSM if a node with a packet to advertise does not send or receive any packets above the RX_.THRESHOLD
as discussed above (e.g., a node cannot transmit since it lost contention to the access). In this case, the node

will wait until the next ATIM window to advertise the packet.

4.1.2 Design Discussion

T;aie Length: As shown in Equation 4.1, we set T;q;. (the time a node waits before returning to sleep) to
be a static value that is long enough for a sender to lose channel access once and still have its receiver remain
listening to the channel. We chose this value to design for systems where traffic, and, hence, contention, is
rather low. We feel that many power save protocols may operate in such environments where traffic is sparse,
such as sensor networks. In Section 4.1.3, we show that this value works relatively well in the environments
we tested.

If traffic is extremely sparse and usually only one node is transmitting in an area, then using an even

smaller value of T;4. may perform better due to the lack of contention. However, if the environment is such

48

that contention increases, then it may be better to choose a larger value of T;4.. Such a situation may occur
in event detecting applications, where a geographically clustered group of sensors may begin contending for
the channel at the same time in response to an event.

The value of T;4 should be chosen appropriately for the expected traffic patterns of the application. If
the amount of traffic has a high deviation (e.g., event detection), it may be beneficial to explore dynamic
values of Tjg4i. In this scenario, a sender may track a contention metric, such as how often it is unable to
transmit its packet within T;4. time or how many other nodes in its neighborhood are contending. If the
contention metric increases, then a sender can piggyback a new T;4 value on advertisement packets. When
nodes receive new Tjq values from their neighbors, they will choose the largest value as the time that they
use to accommodate their neighbor that expects them to remain on the longest.

In the dynamic scenario, a mechanism must be introduced to allow nodes to reduce their T} 4. value when
the contention decreases. A node could keep track of what T;q. value was requested by each neighbor and
when. Then a node would no longer consider that value in deciding which value to use if (1) a soft timer
expires without hearing from that particular neighbor or (2) the neighbor explicitly sends a new, lower T;qe
value, which is then used in future decisions of how long to extend listening. Thus, the T;4. value associated
with each neighbor may be changed implicitly or explicitly. Whenever a neighbor’s T;4 value expires or
changes, the node will again look at its neighbor table to determine which one has the largest T4 value
and, hence, should be used by the node.

The dynamic adjustment could be further optimized by a sender specifying T;q4;. times per receiver rather
than using one valued for every neighbor. The main reason that we do not use such a dynamic scheme is
that it significantly increases the amount of coordination and complexity of the protocol. However, future
work could include incorporating such a modification to determine how much traffic variance is necessary

before such a scheme offers significant benefits over our scheme.

Dynamic Thresholds: In our current protocol description, we use RX_.THRESHOLD and CS_.THRESHOLD
as the signal strengths necessary for a node to consider its neighbors as still listening and to continue listen-
ing to the channel, respectively. We use these values because they are already specified for other purposes.
However, it is not necessary to use these two values. More generally, we could refer the thresholds as Thry,
and Thrysten, and adjust them as necessary. That is, Thr:y, and Thrysten, are not necessarily equal to
RX_THRESHOLD and CS_.THRESHOLD, respectively.

These thresholds could then be adjusted dynamically in response to the environment. By increasing

Thry,, a node becomes more conservative in when it considers its neighbors to still be listening and, hence,

49

transmits. By decreasing Thriisten, a node becomes more liberal in when it continues listening to the channel
and, hence, may receive more of a transmitter’s packets, but expends more energy.

If a sender fails to successfully communicate with its receiver using DCS-ATIM and has to fall back to the
original 802.11 PSM protocol, as discussed in Section 4.1.1, then it can increase its Thrs, by some specified
amount. Each sender could also maintain a Thry, per receiver based on past history. If the sender still
has difficulty in communicating with the receiver, it could piggyback some information (e.g., the number of
beacon intervals the packet has been delayed) in each packet in order to give the receiver an indication that
it should decrease its Thry;sten. Unlike the Thry, value, a node can only use one Thry;sien value (as opposed
to a separate value per sender) since the receiver does not know which senders may try to transmit in a
given beacon interval.

One major design issue is when to decrease and increase Thry, and Thry;sien, respectively, in a dynamic
scheme. The benefit of decreasing T'hry, is that the sender may be too conservative in trying to communicate
and unnecessarily delay packets for subsequent beacon intervals when the receiver is in fact still listening in
the current advertisement window. The benefit to increasing T'hry;sten is that the node will use less energy
remaining on to listen for potential advertisements.

The difficulty with these rules are as follows. The reasons that a sender /receiver pair would try to decrease
Thry, or increase Thryisien are (1) the link and/or connection terminates or (2) their current communication
is acceptable in terms of reliability and they want to try to improve the latency or energy consumption
by changing Thry, and Thrysen, respectively. In the first case, a node must keep track of the thresholds
per connection/link and use, for example, soft timers or packet loss to determine when the connection or
link terminates. At this point, the sender can stop using that receiver’s Thr, value and the receiver can
re-evaluate the Thrysten, value it is using after removing the Thri;sten, value for that sender.

The second case is more difficult since it is necessary to know how much a modification in Thry, or
Thryisten would effect the reliability. One method may be for the nodes to periodically modify their thresholds
for a neighbor and observe the reliability. Determining the magnitude of the change may be another issue.
Also, it may be the case that, for whatever reason, the observations represent outliers when compared with
the common operating environment and, thus, measure better reliability than will be experienced on averaged
with the thresholds being tested.

We chose to use the RX_THRESHOLD and CS_.THRESHOLD values since they are already specified.
Also, choosing a specific Thry, and Thrijsten, would vary largely by environment and, thus, is difficult to
effectively test in simulation. We chose to use static values of the thresholds to simplify the protocol. As

we can see from the discussion in this section, adding dynamic extensions would greatly complicate the

50

protocol. As we show in Section 4.1.3, just using the static value for Thry, and Thrysten, performs well in
many environments and the added complexity of dynamic values may not be worth the potential additional

improvement in many circumstances.

4.1.3 Simulation Results

To evaluate our protocols, we simulated them by modifying the MAC and physical layers of ns-2 [103]. We
use the notation Py, Prz, Plisten, and Pseep to denote the power a node consumes to transmit, receive,

listen, and sleep, respectively. We test the following protocols:

e ALWAYS ON [7]: This is the IEEE 802.11 protocol with no power save. It is the default, unmodified
MAC protocol in ns-2. Because nodes never sleep, ALWAYS ON uses the most energy, but has the

lowest latency.

e 802.11 PSM [7]: This is the standard IEEE 802.11 protocol with power save enabled. 802.11 PSM

is described in Chapter 2.
e CS-ATIM: This is 802.11 PSM with the carrier sensing modification described in Section 3.1.1.

e DCS-ATIM: This is 802.11 PSM with the dynamic ATIM modification for multi-hop networks de-

scribed in Section 4.1.1.

e 802.11 MIN: This protocol needs more explanation because we are unaware of any other work which
uses it. 802.11 MIN represents the minimum latency and energy consumption possible for the IEEE
802.11 protocol. We do not claim, nor believe, that it is optimal across the entire range of possible
MAC protocols. However, it provides a useful baseline to measure other protocols against, since energy
consumption and latency are two competing metrics and the desired tradeoff between these metrics
is application-dependent. The latency for 802.11 MIN is simply equal to the latency for ALWAYS
ON. Generally, ALWAYS ON is better than any power save protocol in latency since a node can
immediately begin contending for medium access rather than waiting for the next scheduled wake-up
time for the sender and receiver. To calculate 802.11 MIN’s energy, a node consumes P;, power while
sending a packet, P,, power while overhearing a packet, Pjsten, power while deferring and backing
off as required by IEEE 802.11, and Pjeep power at all other times. Essentially, for a given scenario,
802.11 MIN represents the lowest possible energy achievable for nodes using IEEE 802.11 if they slept
as aggressively as possible (i.e., a node sleeps whenever they are not sending a packet or attempting

to access the channel). Obviously, such a protocol is not possible since it requires the receiver to have

51

perfect, advance knowledge of when a sender will attempt to begin contending for the channel to send

a packet and wake up at that time (even if the two nodes had never communicated previously).

We use 2 Mbps radios that have a 250 m range. Each data point is averaged over 30 tests. The choice
of a different channel bitrate would have the following effects on the protocols. For CS-ATIM, the carrier
sensing period is rate-independent [109]. Thus, if T, is normalized to the packet transmission time, the
carrier sensing time will be a higher overhead at a high bitrate and a lower overhead at a low bitrate. For
DCS-ATIM, T;4 from Equation 4.1 will be larger for a lower bitrate and smaller for a higher bitrate since
it is a function of how long it takes to transmit ATIM and ATIM-ACK packets.

For each multi-hop scenario, we place 50 nodes uniformly at random in a 1000m x 1000m area and
consider only scenarios in which every node has a route to every other node in the network. To avoid second-
order effects from routing protocols (e.g., the long delay for RREQs to traverse a power save network), we
use Floyd-Warshall’s All-Pairs Shortest Path algorithm [110] to precompute routes for all the nodes.

We vary different parameters for each test, but the following values are used when the parameter is not
being varied. The beacon interval length is 100 ms and T}, is 20ms. Five flows send 512 byte data packets at
a rate of 1 kbps per flow (i.e., each flow uses about 0.05% of the channel bitrate per hop). We test the effects
of increasing the per-flow rate. We use a relatively low rate because at high rates, power save protocols
become ineffective since nodes essentially transition to the ALWAYS ON state.

The sender and receiver of each flow are chosen uniformly at random and the traffic is constant bitrate
(CBR) unless otherwise noted. With CS-ATIM, the carrier sensing time, 7., is set to 1 ms, which is about
66 times larger than the 15 us required by 802.11 compliant hardware. We set T.s to be large to mitigate the
effects of short-term fading. In DCS-ATIM, the maximum backoff interval size, CW,,, is set to be 63 slots.
For the parameters we use, T;qi. is set to 3.19ms according to Equation 4.1. For the power characteristics
of the radio [66,70], we use: P, = 1.4W, Py = 1L.OW, Plisien = 0.83W, and Pyjeep = 0.13W.

As mentioned earlier, CS-ATIM and DCS-ATIM are vulnerable to false positives when they erroneously
carrier sense the presence of a signal. Thus, in some of our tests we evaluate the effect of false positives
on the protocols by specifying a percentage that represents the probability that a node remains on for the
ATIM window even when none of its neighbors transmitted a dummy packet. For example, a 10% chance of
false probabilities means that with probability 0.1, a node running the protocols remains on for the ATIM
window even though there were no dummy packets transmitted.

In this chapter, we present tests that measure energy consumption and latency by varying the following

parameters:

52

e Beacon Interval Time: We vary the length of the beacon interval to increase the amount of sleep

time between beacon epochs.
e Per-Flow Rate: We increase the rate at which each of the flows in the network is sending packets.

e False Positives: For our protocols, we show how false positives (i.e., erroneously detecting the channel

as busy) affect the energy consumption.

In our tests, energy consumption is measured in units of Joules/bit. This is calculated by dividing the
total energy consumed by all nodes in a scenario by the total number of data bits that are received by their
final destination. The latency is calculated as the average end-to-end latency over all packets received by

their final destination in a given scenario.

Evaluating CS-ATIM and DCS-ATIM: First we tested the power consumption and latency of CS-
ATIM and DCS-ATIM. For these tests, we varied the length of the beacon interval from 40 ms to 150 ms. As
shown in Figure 4.2, all of the power save protocols show a decrease in energy consumption as the beacon
interval is increased since this allows nodes more sleep time between ATIM windows. We see that CS-ATIM
and DCS-ATIM both perform significantly better than 802.11 PSM. CS-ATIM and DCS-ATIM use about
the same amount of energy and consume anywhere from 30% to 60% less energy than 802.11 PSM for the
parameters tested. All protocols do significantly better than ALWAYS ON; even 802.11 PSM consumes
anywhere from 40% to 70% less energy than ALWAYS ON. When compared to 802.11 MIN, CS-ATIM and
DCS-ATIM use only about 18% to 30% more energy. The standard deviation for any single data point in

Figure 4.2 never exceeds 4.5% of the mean.

0.009 T T . . , |
0.008 |+t e e
802.11 MIN —--&--
0.007 ALWAYSON ---+--
802.11 PSM —<—
0.006 DCS-ATIM T -
5 CS-ATIM ---m--
5 0.005 _
<@
3 0.004 _
S
0.003 _
0.002 - . _ o o i 4
%,%,,%,5,5,5,5,%,5,%,5,,5
0.001 _
0 | | | | | |

40 60 80 100 120 140
Beacon Interval (ms), ATIM Window = 20 ms

Figure 4.2: Energy vs. beacon interval.

53

160

The disadvantage of using power save protocols is evident in Figure 4.3 that shows the latency of the
protocols. Just as an increasing beacon interval decreases the energy consumption, it increases the latency
since there is a greater probability packets arrive outside the ATIM window and the time that these packets
have to wait to be advertised increases. ALWAYS ON, and hence 802.11 MIN by definition, always do
significantly better than the power save protocols. The maximum standard deviation for any single point on

a curve in Figure 4.3 is between 34% and 35.8% of its mean depending on the protocol.

450 . . , : : —
400 S .
350 i
300 i
» 250 1 i
= 802.11 MIN --&--
200 ALWAYS ON ---+--- o
802.11 PSM —=—

150 DCS-ATIM %
CS-ATIM - -m--

100 + i

50 i
0 e £ et R | e { M= R

40 60 80 100 120 140 160
Beacon Interval (ms), ATIM Window = 20 ms

Figure 4.3: Latency vs. beacon interval.

For the power save protocols, 802.11 PSM always has the lowest latency of the power save protocols.
CS-ATIM, however, tends have a slightly higher latency. The difference between CS-ATIM’s latency and the
latency of 802.11 PSM is relatively constant in the range of 8 ms to 15ms. This small increase in CS-ATIM
latency is due to the greater probability that packets may arrive during 802.11’s longer ATIM window.
DCS-ATIM has a slightly larger latency than CS-ATIM because of the extra carrier sensing period as well
as the fact that sender’s may occasionally have to postpone their advertisement until a later ATIM window.

In Figure 4.4 and Figure 4.5 we show how an increased sending rate affects the protocols. In these tests,
the sending rate of each of the five flows is increased from 1 kbps to 10 kbps (i.e., each flow uses about
0.5% of the channel bitrate per hop). We see that DCS-ATIM does even better relative to CS-ATIM in this
setting since a larger fraction of the ATIM windows have at least one advertisement to be sent. In this case,
CS-ATIM has the same energy consumption as 802.11 PSM. However, DCS-ATIM can do better by allowing
nodes to return to sleep earlier when only one advertisement is sent. The maximum standard deviation
for any point on the ALWAYS ON curve in Figure 4.4 is about 0.5% of its mean; for the other curves in

the figure, this standard deviation metric ranges from 8% to 12.5%. In Figure 4.5, the maximum standard

54

deviation for any single point on a curve ranges from 34.5% to 42.7% of its mean depending on the protocol.

0.0009 T T T T T
e
0.0008 -
0.0007 802.11 MIN --&-—
ALWAYS ON ---+---
0.0006 802.11 PSM —=—
= DCS-ATIM - S
D 0.0005 CS-ATIM ---m--
ko)
B) 0.0004 Fom o R -

0.0003 | K
*

0.0002 - & -3 -G -8--8-8--8-0-—8--3-8 4

0.0001 | i

0 | | | | |
40 60 80 100 120 140 160

Beacon Interval (ms), ATIM Window = 20 ms

Figure 4.4: Energy vs. beacon interval with 10 kbps flows.

However, as Figure 4.5 shows, this improved relative energy consumption comes at the cost of increased
latency. As the beacon intervals get longer with the higher sending rate, more contention occurs during
the ATIM window and, hence, a greater chance that a node with an ATIM to send will have to delay the

transmission until a later ATIM window, which significantly increases the delay of that packet.

600 T T T T T
802.11 MIN --&--
ALWAYS ON ---—+---
500 | 802.11 PSM —— P
DCS-ATIM -~ x
CS-ATIM ---m-- K
400 4

300

ms

200

P e e e e e e e
40 60 80 100 120 140 160
Beacon Interval (ms), ATIM Window = 20 ms

Figure 4.5: Latency vs. beacon interval with 10 kbps flows.

This increased contention and advertisement delay also explains the gradual increase in energy consump-

tion for DCS-ATIM seen in Figure 4.4. We set DCS-ATIM to resort to CS-ATIM when a packet cannot be

95

advertised for three consecutive ATIM windows. Thus, as DCS-ATIM uses more static ATIM windows, its
energy consumption approaches that of CS-ATIM.

In Figure 4.6 and Figure 4.7, we see this trend as a function of per-flow rate. We note that the figures
show the values of these metrics relative to 802.11 PSM (i.e., 802.11 PSM is always equal to one). CS-ATIM
converges to 802.11 PSM in terms of energy and latency when the load increases to the point that packets
are being advertised every ATIM window. DCS-ATIM, however, tends to plateau relative to 802.11 PSM
when the rate reaches the point where packets are being advertised every beacon interval. In Figure 4.6 and
Figure 4.7, the maximum standard deviation of any single point on any single curve as a percentage of its

mean is 11% and 26%, respectively.

3 T T T T T T T T
*o
25 | e i
ol 80211MIN —-m— E

ALWAYS ON ---+---
802.11 PSM —=—
1.5 F DCS-ATIM - I _

CS-ATIM ---m -

1k o . .
ol S eemee e w
,r’* ______________ S ;-'V» 777777777777777 x

05 L& E - JEN |

Energy Relative to 802.11 PSM

0 1 1 1 1 1 1 1
0 02 04 06 08 1 12 14 16

One Hop % Channel Utilization Per Flow, 1% = 20.0 kbps

Figure 4.6: Relative energy consumption vs. per-flow rate.

False Positives As mentioned earlier, our protocols are susceptible to false positives when nodes carrier
sense the channel as busy even though no dummy packet was sent. In this case, nodes waste energy by
staying up for an ATIM window when no packets need to be advertised. In Figure 4.8, we see that CS-ATIM
and DCS-ATIM show a linear increase in energy consumption as the false positive probability increases. In
the worst case, when the false positive probability is equal to 1, the energy consumption of our protocols
converges to slightly more than that of 802.11 PSM since they still have the overhead of carrier sensing. The

maximum standard deviation for any single point on any single curve in Figure 4.8 is 3.6% of its mean.

56

traffic on a path.

Latency Relative to 802.11 PSM

Joules/Bit

1.4 T T T T T T T

"""""" oo K

12 I I SIS _
1 LR S] B
0.8 - _

802.11 MIN --5--
ALWAYS ON ---—+---

0.6 - 802.11 PSM —— .
DCS-ATIM -
04 | CS-ATIM - -m - 4
02 | .
o LEE By 8y 8

0 02 04 06 038 1 12 14 16
One Hop % Channel Utilization Per Flow, 1% = 20.0 kbps

Figure 4.7: Relative latency vs. per-flow rate.

0.009 T . , ,
0.008 -t b
0.007 - _
802.11 MIN --&-
0.006 |- ALWAYSON ---+--- +
802.11 PSM —=<—
0.005 - DCS-ATIM - -
CS-ATIM ---m--
0.004 _
0.003
0.002 -
0.001 |]
O 1 1 1 1
0 0.2 0.4 0.6 0.8 1

False Positive Probability

Figure 4.8: Energy vs. false positive probability.

4.2 Multi-Level Power Save Routing

In this section, we propose an adaptive sleeping approach for an in-band protocol. This is somewhat different
from our previous work [27-29] on adaptive sleeping for out-of-band protocols in that we use the routing

layer as opposed to only the link layer. The sleep intervals adapt in response to the desired latency of the

In particular, we design a routing protocol for networks that use multiple levels of power save protocols.
Each level of power save provides a different energy-latency tradeoff (i.e., a level with a lower latency requires

more energy). We note that this paradigm is a generalization of the environment in [66,67] (discussed in

o7

Section 2.1.3) where only two levels of power save are assumed (i.e., (1) not using any power save and (2)
using 802.11 PSM). This allows applications (e.g., sensor reports) to achieve an acceptable latency while
reducing energy consumption in the network.

By incorporating the routing layer in the power save process, we believe that the energy-latency tradeoff
can be better adapted to fit the needs of an application. For example, consider the scenario where data
packets are being sent from A to C via the route A — B — C. Using network layer information, we can
design power save protocols to consider the whole route. In pure link-layer-based approaches, the power save
protocol would run independently at links A — B and B — C.

The idea of using multilevel design to achieve acceptable tradeoffs is prevalent in computer science
(see [111] and references therein). For example, in computer architecture, accessing cache is much faster
than main memory. However, main memory is cheaper in terms of cost per byte and is capable of storing
much more data.

In Section 4.2.1, we give an overview of the link layer protocol that provides multilevel power save. In
Section 4.2.2, we describe our routing protocol to effectively use multilevel power save. We present simulation

results in Section 4.2.4.

4.2.1 Link Layer Protocol Description

First, we need to specify how the link layer power save protocols can be designed to provide k levels of
power save, each with different energy-latency characteristics. Many power save protocols can be adapted to
achieve this as discussed later in this section. We use 802.11 PSM [7] as the underlying power save protocol,
which is described in detail in Chapter 2. This protocol is used because it is in-band and for the reasons
discussed in Section 2.1.1, such as well-documented specification and widespread usage.

The 802.11 PSM protocol can be adapted to provide k levels of power save by changing how frequently
a node wakes up to listen during an ATIM window based on its current power save level. We denote these
k power save levels as PSy, ..., PSiy_1. Without loss of generality, we assume that P.Sy corresponds to the
“always on” state and PSg_1 uses the least amount of energy, but has the highest latency. In PSj, the
nodes never sleep and, thus, can receive a packet with the lowest latency, but also consume the most energy.
The next level, PS; corresponds to the standard implementation of 802.11 PSM. That is, when a node is
not sending or receiving any packets, it wakes up for every ATIM window and sleeps for the remainder of
the beacon interval. In PS5, nodes wake up only every other ATIM window. This allows them to save about

twice as much energy as the nodes in level PS; while also doubling the latency to send or receive a packet.

o8

Because we want to ensure that every node has their ATIM overlap with every other node periodically,
we increase the sleep time for each level by a factor of two. This is a simple method to guarantee overlap,
but more complicated schedules [41,42] may work as well. Thus, to calculate the beacon interval for level
PS;, we have:

BI; = 27 x Blygse , when i >0 (4.2)

where BI; is the beacon interval for the i-th power save level and Bly,s. is the base beacon interval specified
for the system (i.e., BI1 = Blpgse)-

Figure 4.9 illustrates the multilevel link layer protocol with k& = 4. In this figure, AW corresponds to the
ATIM window size and we show only the case in which no traffic is being sent. The beacon intervals of the
four power save levels are: Bly =0, BI; = t1 — tyg, BI; = ts — tg, and Bl3 = t4 — tg. The base interval is t;

(i.e., Blpgse = tl).

AW

:<_>: 1 1 1 1

— : : : : “ON
P50 | | | | | SLEEP

1 1 1 1 1 1 “ON77
PS5, SLEEP

1 1 E 1 E 1 “ON”
s, ; ; SLEEP

i e e e ' ‘on
PS; | | | SLEEP

to ty ta t3 t4

Figure 4.9: Multilevel power save with 802.11 PSM [7].

The largest possible beacon interval, BI;_1, serves as the reference point for all of the nodes to ensure
that they remain in phase. That is, the first ATIM window for which a node awakes in a cycle must always
occur at the beginning of a reference point beacon interval (that is spaced BI;_1 time units after the previous
reference point). The reference points in Figure 4.9 are at ¢ and t4.

Since we assume that the nodes are synchronized, each node is initialized with the time of the previous
reference point. Alternatively, if a node is added to the network later, it can learn the time of the previous
reference point from older nodes in the network, along with the ATIM window size, Blpgse, and the number
of power levels the network is using via 802.11 management frames. This guarantees that for any two nodes,
one with P.S; and the other with power level PS; where ¢ < j, then the node with PS; will be awake during

every ATIM interval that the node with PS; is awake since BI; is divisible by BI;.

99

Each node keeps track of its neighbors’ power save state as follows. On every data and ACK packet a
node sends, it attaches its current power save level. We do not test the consistency of a node’s power save
table. However, our protocol could use a scheme similar to the one in [66] whereby the first time a packet
transmission fails, a node sets the intended receiver’s power save state to PSi_1. Recall that PS;_1 has the
longest beacon interval and all nodes, no matter what power state, are guaranteed to wake up every Blj_1
time units. Thus, if the neighbor still exists near the node, communication should be possible during this
beacon interval. If a transmission fails again for the receiver using PSy_1, then the link is considered dead
and reported to upper layers.

This is just one example of how a power save protocol can be modified to achieve multiple levels with
different energy-latency tradeoffs. Other examples include adjusting the time between listening periods in
protocols such as STEM [2, 3] and WiseMAC [58]. Nodes using a longer sleeping time between listening

periods would save more energy, but require a longer latency to be awakened by neighbors.

4.2.2 Routing Protocol Description

In Section 4.2.1, we described how to provide multilevel power save. In this section, we describe a routing
protocol to efficiently use multilevel power save. If energy consumption is the only concern, the optimal
adaptive sleeping strategy is simply for every node to select PSi_1 as their power save state. However, this
results in large delays due to the power save protocol that may be unacceptable for many applications.

Thus, our protocol works by taking an application-defined latency bound and trying to find a route to
achieve the bound while attempting to minimize the increase in energy consumption. We focus on only
the latency induced by the power save protocol because this delay tends to be large (e.g., hundreds of
milliseconds or even seconds per hop) relative to contention and queuing delay in non-congested networks.
In highly congested networks, power save protocols would most likely not be used. A vast body of QoS
research deals with congestion and queuing delay which we view as orthogonal and complementary to our
work.

If we are given a set of m flows to route (F1, Fy, ..., F,,) and a desired latency for each flow (L1, Lo, . . ., L),
finding routes that minimize the overall energy consumption increase for the flows is NP-complete. A proof
of this is presented in Appendix B. In this work, therefore, we consider heuristics to address the problem.

We modify DSR (Dynamic Source Routing) [77] to obtain our routing protocol. We now give a brief
overview of the salient aspects of DSR. When a source, S, wants to send packets to a destination, D, it must
first discover a route. To do this, S broadcasts a route request packet (RREQ) that is flooded throughout

the network specifying that it is trying to find a route to D. Each node, other than D, that receives S’s

60

RREQ will add itself to a node list in the packet and rebroadcast the RREQ (assuming that the TTL
of the RREQ has not expired). Each RREQ is rebroadcast only once by an intermediate node. So, if
multiple copies of the same RREQ are received by a node, as determined by a unique sequence number for
the request, the node will forward only the first one that it receives. If the RREQ reaches D, it generates
a route reply (RREP) packet and sends it to the source.® The RREP packet is generated by reversing the
node list in the RREQ and sending the RREP along the path specified by the node list. The entire node
list is included in the payload of the RREP packet and is also used for source routing the packet to S. A
node that receives a source-routed packet will only forward it if the node’s ID is next on this node list. To
do so, it transmits the packet to the next node ID specified on the list. In this manner, the RREP makes
its way back to S. At this point, S extracts the node list from the payload of the RREP and uses it as
the source route to forward data packets. That is, every data packet that S sends will have the node list
appended to the routing header.

We modify DSR as follows. The RREQ sender adds its desired latency, L, for the flow to the RREQ
packet. When forwarding the RREQ, each node will append its current power save state in addition to its
node ID. When D receives its first RREQ from S, it will set a timer for some specified time, Tyejqy.% D will
not send a RREP until this timer expires. While the timer is running, D will collect all RREQs with the
same sequence number that it receives from S. At the end of this Tyeiqy time, D will evaluate all the paths
it has received from these RREQ@s and send an RREP along the “best” path. Next, we specify the routing
metrics that are used to determine which path to use.

The goal of our routing metric is to find the path that can achieve the desired latency, L, (specified in
the RREQ) while increasing the energy consumption in the network the least. To do this, we consider paths
that have been collected during the RRE(Q reception phase. For each path, we find the node on the path
whose energy consumption will increase the least by moving to the next higher energy state (and, hence,
lowering the latency for that hop). We continue iterating in this manner until the path’s end-to-end power
save-induced latency is less than L or all nodes are in the highest energy state. At this point, we store the
total energy increase for the path that was necessary for the iteration to terminate. Once this has been
done for all the paths, we send the RREP on the path that requires the smallest total energy consumption

increase. If two or more paths are tied for the minimum cost, then our protocol prefers routes with the

4Non-destination nodes replying to RREQs using cached routes is one of many extensions that has been proposed for DSR.
We do not use cached replies in our work.

5 Another option in DSR is whether the destination replies to every RREQ it receives or just the first one. In our protocol,
the RREP procedure is modified, but the destination will send only one RREP per RREQ.

6 Another option is that a node replies after receiving some number, say z, RREQs even if the Tielay timer has not yet
expired. For example, if z = 1, then a node would just calculate the power save state changes required for the path on the first
RREQ that it receives and use that path (and disregard all subsequent RREQs for that route discovery). If x = 2, the node
would consider only the first two RREQs that it receives and cancel the Tgejqy timer if it has not yet expired.

61

lowest hop count.” Our algorithm is shown in Figures 4.10, 4.11, and 4.12.

Each node receiving the RREP will check the requested power save level set for it by the destination.
If the requested power save level is a higher energy level than its current level, then the node switches to
the new power save level. Otherwise, it will remain in its current power save state since it is sufficient to

maintain the desired latency of the path.

FIND-ROUTE(R, L)

1 Rwekx

2 * Find route on which to send the RREP
3 *given a list, R, of received RREQs
4 * and latency threshold, L
5 kAR |
6
7 isFirst < true
8 for each r in R
9 do cost < ENERGY-INCREASE(r, L)
10 if isFirst or cost < min
11 then min = cost
12 minRREQ =r
13 isFirst « false
14

15 /* Set the requested power levels for the chosen path */

16 ARRAY-CoprY(psLevelsiminRREQ), newPsLevels[minRREQ)])
17

18 /* Reply using the path from minRREQ */

19 SEND-RREP(minRREQ)

Figure 4.10: Algorithm for determining which path to use from collected RREQs.

The FIND-ROUTE function in Figure 4.10 finds the route to use based on R, the set of RREQs that have
been collected. For each RREQ, FIND-ROUTE calls ENERGY-INCREASE (discussed below) to calculate the
cost of using the RREQ)’s route in terms of how much the energy consumption of the path must be increased
to reach the latency threshold, L. At the end of the for loop, the least costly path is found and the power
save states are set to the new power levels necessary to achieve the latency threshold (newPsLevels is a
global variable set in ENERGY-INCREASE). With these updated power levels, the RREP is constructed and
sent along the chosen path via the call to SEND-RREP.

The ENERGY-INCREASE function in Figure 4.11 computes the minimum increase in energy consumption
necessary for the path in a RREQ, r, to achieve the desired latency, L. First, the function makes a copy of
the power save levels of the nodes in r’s path (psLevels[r]) since our algorithm needs to change this state.
The energyCost variable keeps a running total of the increase in energy consumption required for r’s path to

reach L. The while loop on line 21 will continue until the latency of the path is less than L (we assume that

7“We note that other metrics such expected number of transmissions or packet loss [112] could be used instead.

62

ENERGY-INCREASE(r, L)
1 /*****

2 * Find the minimum energy consumption increase required
3 * for the path in a RREP, r, to achieve a wake-up

4 * latency less than or equal to L.

5 ek

6

7 e

8

* psLevels[r] contains the current power save level
9 * of each node along the path in 7.
10 * psLevels[r] is an array with an element for each node on the path.

11)
12
13 /* pathLen]r] is the length of the path in r */
14

15 ARRAY-CoPY(newPsLevels|r], psLevels[r])

16 energyCost «+— 0

17 e

18 * We assume that PATH-LATENCY < L

19 * when newPsLevels[r][i] = 0 for all ¢ on the path
20 ek

21 while PATH-LATENCY(r) > L

22 do isFirst « true

23 for i < 1 to pathLen]|r]

24 do cost < ENERGY-DIFF(newPsLevels[r][i], (newPsLevels[r][i] — 1))
25 if cost # 0 and (isFirst or cost < min)

26 then min = cost

27 minlnder =1

28 isFirst « false

29 energyCost < energyCost + min

30 newPsLevels[r][minIndex] < newPsLevels[r][minIndez] — 1

31 return energyCost

Figure 4.11: Algorithm for computing cost of a path to reach latency threshold L.

this will always terminate in the pseudocode). Each iteration of the while loop will calculate the difference
in energy consumption that would result fo