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Abstract— While ad hoc routing research is

plentiful, two protocols have as the most popu-

lar and widely tested. They are Dynamic Source

Routing (DSR) and Ad hoc On demand Distance

Vector routing (AODV). In this paper, we look

at methods to improve fault tolerance in AODV.

This is desirable because in ad hoc settings mo-

bility may cause routes to break frequently and

hence alternate paths are needed. We consider

two approaches to the problem. The first tries

to achieve fault tolerance in an end-to-end fash-

ion with the data source responsible for repairing

routes. The second approach tries to achieve the

same goal by maintaining multiple routes at inter-

mediate nodes on a path to achieve better results.

Simulations show these changes do not greatly af-

fect the performance of AODV. We therefore con-

clude that while the optimizations may seem use-

ful, they are not worth the added complexity of

implementation in the current version of AODV.

1 Introduction

As wireless systems have become more prevalent, re-
search has exposed many new directions where exist-
ing wired network solutions cannot be applied. The
many differences include potentially dynamic physi-
cal topologies, higher bit error and packet loss rates,
the need to conserve energy, possible lack of central-
ized services and different MAC protocols. A rich
field that has emerged is that of ad hoc routing. An
ad hoc network is one in which mobile hosts (MHs)

communicate with each other over wireless links with-
out the benefit of a centralized authority. Routing is
important in such networks because paths can change
quickly, so efficient route discovery and maintenance
is necessary. However, because bandwidth is scarce
and MAC competition relatively high, the amount
of routing overhead must be minimized as much as
possible.

There are two general approaches to the problem.
Proactive protocols attempt to maintain routes to
destinations regardless of connection status. Reactive
protocols try to find routes only when a source needs
a path to a specific destination. The major tradeoff
in the two approaches is large amount of overhead in
proactive protocols versus the performance degrada-
tion in packet latency and delivery in reactive proto-
cols. Particularly, when there is high mobility, links
can break frequently and reactive protocols are forced
to drop many packets due to the lack of a valid route
and delay sending packets while a new route is be-
ing discovered. In lieu of this tradeoff, simulation
studies [1] have shown reactive protocols generally
perform better. Furthermore, two reactive protocols
in particular have emerged as the standard against
which all others are measured. The protocols, Ad hoc
On demand Distance Vector Routing (AODV) [2] and
Dynamic Source Routing (DSR) [3], share many sim-
ilarities, particularly in their route discovery mecha-
nism, but also have many glaring differences. These
protocols have the most complete specifications and
have undergone more extensive analysis and testing
than any other. Therefore, it is reasonable to assume



the ultimate ad hoc routing solution will strongly
draw on characteristics of these protocols. We pro-
pose to enhance the AODV protocol with some favor-
able aspects of DSR. By extending these protocols,
we start with a well–studied foundation.

DSR uses source routing, so all data packets con-
tain the complete path for a packet to use. AODV,
however, just uses next hop information to route
packets based on the destination in the header. We
believe the AODV paradigm is more likely to be im-
plemented widespread because it fits well in the rout-
ing model systems currently use. Specifically, oper-
ating systems maintain a forwarding table for data
packets which, based on the IP destination, send the
packet to the appropriate next hop. Such a procedure
has been well–studied in wired networks and has led
to quick lookups and route aggregation. In contrast,
source routing requires parsing through the packet
header for the next hop, does not lend itself readily
to aggregation and increases the IP overhead linearly
with the length of the path. However, performance
studies [4] have shown DSR tends to be more efficient
than AODV. One of the major factors in DSR’s per-
formance is its ability to maintain multiple paths to
destinations during the route discovery phase. This
is critical in performance because route discovery is
very expensive, potentially requiring a network–wide
broadcast. During this process, many MHs may re-
ply to the request. DSR lessens the expense of route
discovery by storing multiple paths that are learned
in this process. Therefore, when a route breaks, DSR
could possibly find alternate routes and use those as
opposed to initiating a new route request (RREQ)
broadcast. AODV, however, must waste this extra
information learned from the route replies (RREP).
Therefore, when a link breaks, AODV must initiate
a new RREQ broadcast.

We propose to augment AODV to take advantage
of the multiple paths that can be learned during a
route discovery. Two approaches are possible. One
is to have the source node maintain more informa-
tion on the paths to destinations, so that when a link
error is detected, the source can use that informa-
tion to route the packet via another node which has
a route to the ultimate destination. This makes end
hosts responsible for maintaining routes to the des-

tination. Thus, if a hosts determines an error has
occurred it can decide whether to try to find another
route to the destination or just give up on the commu-
nication. The other approach is to have intermediate
routers maintain more information on the route to
the destination, so that when a link error occurs, the
router would be able to route the packet through an
alternate route.

The rest of the paper is divided as follows. In Sec-
tion 2, we will discuss previous work that has been
done in ad hoc routing and fault tolerance in this
environment. In Section 3, we describe the design
of our protocols. Specifically, Section 3.1 discusses a
source oriented recovery approach, while Section 3.2
presents an approach which makes use of intermedi-
ate nodes. Section 4 presents the simulation results
obtained by the protocols when compared to AODV.
In Section 5 we will conclude the paper. Finally, the
work division for the project is presented in Section 6.

2 Related Work

As mentioned, there has been a multitude of research
done in the area of ad hoc routing [5]. Many protocols
have been proposed that address different problems,
such as stability and mobility. Many protocols are
fairly complex, but they do not discuss how to handle
common irregularities such as control packets being
lost or how to function when a node’s routing state is
lost either through timeouts or system reboots. DSR
and AODV, however, have been rigorously tested and
deal with these issues. Furthermore, both of them
have existing implementations, whereas most others
have just been tested under the simplifying assump-
tions of a simulator. Therefore, by extending these
protocols, they can more readily be integrated into
real-world systems.

The tradeoffs in reactive and proactive protocols
have typically been addressed by creating hybrid pro-
tocols which attempt extract the benefits of each.
One of the best performing protocols in the hy-
brid category is Adaptive Distance Vector (ADV) [6]
which takes a proactive protocol and makes it more
reactive by only allowing routing information to be
exchanged for active destinations. It also greatly de-
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creases the amount of proactive routing overhead by
varying the frequency of the routing updates based
on network mobility and node queue lengths. Addi-
tionally, it allows for partial updates of a subset of
active destinations. Simulations show ADV outper-
forms not only proactive protocols, but AODV and
DSR as well, in many important metrics. However,
the approach requires a massive amount of state to
be maintained and does mention that convergence in
learning of active receivers could be slow if packets
(or state) is lost. Additionally, all of the results pre-
sented are for high mobility scenarios.

There have been previous attempts to add fault
tolerance to AODV. In [7], the authors attempt to
decrease the latency and packet loss in AODV during
a route error (RERR) by allowing nodes to promis-
cuously listen to RREPs and passively keep track of
routes to the destination. When a link break does
occur, the node on the primary route broadcasts the
data packet with a TTL of one. If one of the neigh-
bors has a passive route to the destination, it can then
unicast the packet. Concurrently, the primary node
sends a RERR back to the source, who then initiates
a new route discovery. The simulations demonstrate
this approach suffers when the number of connec-
tions and mobility is high because many neighbors
will try to broadcast data packets and the collisions
will significantly decrease performance. There are a
few more problems with the approach. Additional
header processing and implementation issues arise to
allow intermediate nodes to forward some broadcast
data packets from an alternate routing table. Ad-
ditionally, they require nodes do not forward pack-
ets which are duplicates. While the is easy in simu-
lation, it becomes non-trivial in a real-world imple-
mentation. Additionally, the amount of overhead for
RREQs is not decreased. In contrast, our approach
will not require any special processing for data pack-
ets, nor does it require nodes to promiscuously listen
to unicast packets. Additionally, their approach does
not take advantage of multiple paths.

In [8], the authors do address the issue of how more
information can be learned from RREPs to main-
tain multiple routes to a destination. They allow
for intermediate nodes to learn of link and node dis-
joint paths between a given source and destination.

They maintain multiple next hops for a given desti-
nation that can be used to forward packets when a
link break is detected. They show in mobility, their
protocol is able to reduce the packet delay drasti-
cally and also reduce the routing load. However,
the paper leaves some unresolved issues such as how
the alternate paths are exercised. Since the entries
for a given destination will time out eventually, the
alternate paths will not always exist because rout-
ing entries are refreshed based on how recently they
have been used for data forwarding. Additionally,
they require the destination to generate an arbitrary
number of RREPs for RREQs arriving from different
neighbors. Also, the protocol requires intermediate
nodes to reply with a maximum hop count to a des-
tination, then only accept alternate routes that are
shorter for a given destination and sequence num-
ber. However, this requires an intermediate node to
wait before forwarding an RREP. Typically, the route
with the shortest hop count would be received first
at an intermediate node, so this node would have to
collect alternate paths with longer hop counts before
forwarding the RREP because once the packet is for-
warded, later arriving, longer hop paths cannot be
accepted.

The protocol described in Section 3.1 was influ-
enced by the idea of virtual links used in overlay net-
works. This concept is used for multicast [9, 10] and
resilience when BGP routers fail [11]. For resilient
overlay networks, sources keep track of multiple ap-
plication layer paths to reach a destination in the
event a large performance decrease is detected at the
network layer path. We believe this idea is applica-
ble to ad hoc networks and hope our method leads to
further ideas which can apply virtual links to ad hoc
networks.

3 Protocol Design

3.1 Source Oriented Recovery

The basic idea of this approach is the route discov-
ery process is expensive due to its broadcast nature.
However, it will also usually provide nodes extra in-
formation about the topology aside from the shortest

3



S A B C D

GFE

Figure 1: An Example Topology

path to the destination. In particular, multiple paths
may be learned for a given destination. While DSR
does cache multiple routes, AODV has no such mech-
anism due to its next-hop nature. In Figure 1, S can
learn of two routes to D. However, all S will know
about the routes is they use A as a next hop and
S will not be able to control which path is used. In
DSR, the entire paths would be learned and placed in
each data packet. Therefore, S could control which
path is being used and have more information about
the path the data will travel on. Furthermore, this
approach allows intermediate nodes to only main-
tain a small amount of state for each source that
uses it. In DSR, the intermediate routers do not
have to maintain any state per source since the data
packet carries all the routing information (optimiza-
tions such as route caching may require intermedi-
ate nodes to maintain some state per source). In
AODV, each intermediate node maintains at most
one entry per flow (source-destination pair). Previ-
ous approaches to fault tolerance in AODV [7, 8] re-
quire either intermediate nodes to keep track of po-
tentially multiple entries per flow or require nodes
not on the primary path to keep track of flow en-
tries. In contrast, our approach places the burden
for maintaining extra state on the source of the flow.
As in AODV, each intermediate node on the primary
path only maintains at most one entry per flow. The
source will maintain multiple routes learned in the
route discovery process and be responsible for using
alternate paths when an error is detected.

To achieve source oriented fault tolerance, we first
observe that while source routing each data packet is
expensive, we can add route information to control
packets at little expense. Additionally, the routing
daemon can then potentially emulate source routing
when necessary by having control packets which give

the entire path along which the control packet should
be sent. Therefore, when the RREQ is broadcast,
each node is required to add its address to the packet.
If the RREQ reaches the destination, the path infor-
mation is then attached to the RREP being sent back
to the source. Nodes which receive the RREP will
only cache the path information if the destination is
one which they are actively sending to. If intermedi-
ate nodes respond to the RREQ with cached infor-
mation, the path information is not included in the
RREP since the intermediate nodes would not have
path information to the destination unless they are
also sending to that specific destination. An opti-
mization to the protocol would be to allow interme-
diate nodes to include the path information if they
are sending to the requested destination. In our sim-
ulations, the number of flows was never greater than
the number of nodes so the situation where more than
one node was sending to the same destination did not
arise frequently.

In AODV, each node will only respond at most
once to a specific RREQ. This is desirable because it
avoids the RREP storm problem that may occur in
DSR. We modified the protocol to behave according
to the DSR specification. The protocol still allows in-
termediate nodes to reply at most once to a specific
RREQ, but the destination may respond multiple
times. In DSR, there is no limit to how many times
the destination may respond. However, simulations
showed that the destination tends to receive many
RREQs and hence generates a plethora of RREPs.
Furthermore, the performance gain from multiple
RREQs plateaued relatively early. This means most
of the RREPs would just create extra overhead in the
system with no gain. Therefore, we capped the num-
ber of RREPs a destination may generate at three.
This technique is also used in [8]. All the RREPs
generated by the destination are routed back via the
shortest path the destination has to the source.

When a source receives RREPs, it will behave like
AODV in that the shortest path will be used. How-
ever, the k shortest routes obtained are also cached
with the path information (if present) and all the in-
formation necessary to add a forwarding table entry.
Alternatively, many other factors could be considered
aside from shortest path, such as the link-disjointness
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of the path or any number of other metrics.
One aspect of AODV we have neglected to mention

thus far is its use of sequence numbers. These are
used to provide loop freedom in many cases. When
nodes update information about a given destination,
they can only do so if the sequence number is equal
to or larger than the last known sequence number for
the destination. This serves to give some ordering
to the events that occur in the system. Whenever a
destination generates a new RREP, it will increment
its sequence number. In our protocol, we follow this
same methodology for providing some amount of loop
freedom. When a source overhears information about
a destination via some control packet, it must replace
all existing information about the destination if the
sequence number in the control packet is larger than
what was previously known. While this may cause
us to lose path information frequently, it is more im-
portant to have loop freedom and some measure of a
route’s “freshness” in our protocol.

Now we have stored additional information during
the route discovery process, we must address how to
use this information when the primary path detects
an error. When a link break occurs, a RERR is gen-
erated with the broken link specified. When a node
receives the RERR and it makes one of its destina-
tions become unreachable, the node will check for an
alternate path it may know of to the destination. If
one exists, it will sent a PROBE message to the des-
tination along that path. The PROBE message is
essentially source routed along the path to the desti-
nation. Since we are not using HELLO messages in
our implementation, a node may not have a routing
entry for the neighbor specified in the source route. If
this occurs, the node broadcasts the PROBE packet
with a TTL of one. Only the node whose address
is next on the source route will process the PROBE
Each node that processes the PROBE message sets
up a reverse pointer to the source as is done when
processing a RREQ. If the destination receives the
PROBE, it responds with a RREP to the source.
This RREP is handled as in AODV and sets up a
new path between the source and destination with-
out having to do a broadcast route discovery. After
alternate paths have been used a specified number of
times, a new route discovery process will be initiated

instead of the PROBE process to allow the node to
discover a fresh path. Additionally, a timer is asso-
ciated with each PROBE message sent. If the node
has not received a RREP when this timer is fired, it
will initiate a route discovery process. An additional
optimization would be to piggyback data packets on
these PROBE packets to allow data to reach the des-
tination while the path is being set up.

Referring back to Figure 1, we will demonstrate
how the protocol would behave. First, S broadcasts
a RREQ searched for D. D will receive this RREQ
along two separate paths and hence send one RREP
with the path S-A-B-C-D and one with the path S-

A-E-F-G-D. S will choose to use the first path since
it has one less hop. Now, assume the link between
B and C breaks. B will send a RERR indicating D

is unreachable because the B-C link broke. When
S gets the RERR, it will search its route cache for
a path which does not have the B-C link and then
place the S-A-E-F-G-D path in a PROBE message.
When the PROBE message reaches D, a RREP will
be sent back to S and the new path will be estab-
lished. Intermediate nodes cannot respond to this
PROBE message with a cached route to D because
it probably wouldn’t know if its path to D includes
the B-C link since the path information would not
be cached at most intermediate nodes.

To summarize, the major changes made to the
packets of AODV are:

• Add path information and path length in RREQ
and RREP packets.

• Include the broken link information in RERR
packets.

• Add the PROBE packet to the protocol. This
packet contains a path and path length as well
as the source and destination nodes, their respec-
tive sequence numbers and the hop count.

The major changes made to the protocol logic was the
extra processing to cache path information for a given
node’s destinations and the sending and handling of
probe packets.

5



3.2 Intermediate Router Recovery

In AODV, the source node performs a route discov-
ery whenever it does not have a route toward the des-
tination, or the route that it was maintaining fails.
When performing a route request, the source broad-
casts an route request (RREQ) packet, so that the
destination or an intermediate node that has a route
to the destination can reply to the source with route
reply (RREP) packet. Broadcasting a packet causes
contention in the network, and is very expensive in
terms of overhead. So we want to avoid broadcasting
as much as possible.

One observation we make is that the source can
learn multiple paths to the destination when perform-
ing route discovery. But in original AODV, only one
path is maintained at the source and at each router.
So if the route breaks, due to mobility or other rea-
sons, the source would have to perform route discov-
ery again. For example, suppose we have a set of
nodes placed as in Fig. 2. Node S wants to send
packets to node D. During route discovery, node S
can learn two paths to D, S-A-B-C-D and S-A-E-F-
D. But in original AODV, A only maintains one route
for D, so only path S-A-B-C-D can be used for de-
livering packets toward B. If the link between B and
C breaks, S would have to perform route discovery
again, because it no longer knows a path to reach D.
But if A has maintained both A-E and A-B as routes
toward D, S might be able to use S-A-E-F-D instead
of performing an expensive route discovery.

S A

B

E F

C

D

Figure 2: An example scenario in AODV. Each node
only maintains one route for node D. The solid line
indicates the route from node S to node D.

So we want to let nodes maintain multiple routes
for each destination, as in Fig. 3. In Fig. 3, the
route A-E is maintained as a secondary route toward

D. If the primary route works ok, everything is fine
and the secondary route is not used. If the primary
route breaks and a node detects that it cannot for-
ward a packet through the route, it tries to forward
the packet to the secondary route if it has one.

S A

B

E F

C

D

Primary Route

Alternate Route

Figure 3: An example scenario in AODVM-R. Node
A maintains two routes for node D. The route from
A to E is maintained as a secondary route toward D.

The proposed protocol, AODVM-R, modifies the
original AODV protocol to allow each node to main-
tain multiple routes for each destination. A similar
approach is taken in AOMDV [8], but our scheme has
several differences from AOMDV. First, in AODVM-
R, the primary route and the secondary routes are
separated. The primary route is always selected, un-
less the node detects that this route is broken. This
is important because if a node has multiple routes
for a destination, all the routes have different hop
counts toward the destinations. When node C replies
to node B with its route information, C should tell its
neighbor what is C’s distance (hop counts) from the
destination. In AOMDV, the maximum hop count of
the routes is chosen to be the “advertised hop count”.
Also, when a node receives a route with the same des-
tination sequence number, the route is accepted only
if it has a lower hop count than the advertised hop
count. But as mentioned in section 2, an intermediate
node needs to wait for some time to gather multiple
RREPs, before it sends out its RREP. In our scheme,
hop count of the primary route is the advertised hop
count. An intermediate node does not need to wait,
but can forward the first RREP packet that arrives.
All the subsequent RREPs only contribute to estab-
lishing alternate routes at the node, and are not for-
warded. Second, keeping the alternate routes fresh is
not addressed in AOMDV. We address this issue by
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introducing REFRESH messages. In Fig. 3, if the
primary path S-A-B-C-D is used for long time, even-
tually the routes at E and F will experience timeout
and be discarded from the routing table. So by the
time the primary route breaks, the alternate paths
might not be available for use. To avoid this prob-
lem, we need some ways to refresh these routes. Us-
ing REFRESH messages to keep the alternate routes
fresh is described later in this section.

Now we described our protocol, AODV Multipath

- Router Approach (AODVM-R), in detail. Refer-
ring again to Fig. 3, suppose node S wants to send
packets to node D. Since S does not know how to
forward packets to D, it goes through a route discov-
ery process. S broadcasts RREQ packets, and the
RREQ packet is forwarded by the intermediate node
until it reaches D. Now D will receive RREQ pack-
ets from both its neighbors, C and F. D sets up a
reverse path to both neighbors. Now since D is the
destination, it sends RREP packet back toward S. It
sends RREP packets to all the reverse paths it has.
Intermediate nodes also forward RREP packets to all
the reverse paths they have. Now node A will receive
two RREP packets, with the same sequence number,
one from B and one from E. If RREP from B came
first, B becomes the next hop in the primary route
of A. This RREP packet is forwarded toward S. The
RREP from E comes later, and E becomes the next
hop in a secondary route of A. This RREP packet is
not forwarded, because A has already forwarded an
RREP packet to S.

If the node density is high, there can be a lot of
multiple paths that can be learned from route dis-
covery. If each node maintains all the routes it has
learned, the storage overhead will become too high.
Also, it is not likely to benefit from having so many
alternate routes. So we only maintain up to k routes
per destination at each node. All the routes after kth
route are discarded.

When maintaining multiple routes, it is important
that we make sure there is no loop in the paths. If
each node maintains multiple reverse paths toward
the source during route request, it is possible that a
loop is formed inside a path to the source. To avoid
loops, we have RREQ packets include the whole path
information from source to the router, so that the

router will be able to figure out if this route is making
a loop or not. So when forwarding an RREQ packet,
each router appends its address to the RREQ packet.
When a node receives an RREQ packet, it checks if
the reverse path can potentially form a loop. If the
path included in the RREQ packet includes the node
itself, the node simply ignores the RREQ packet. If
the reverse path is not making any loop, the node
can maintain the reverse path, even if it already has
another reverse path toward the original source.

Now we have made the routers to maintain multi-
ple routes if it learns of multiple routes during route
discovery. As long as the primary route is working,
the alternate routes are not used. If a link breaks,
nodes at the edge of the broken link detect the link
breakage. This is done either by link layer detection
or by absence of hello messages. The nodes discard
any route that uses the broken link. If any destina-
tion becomes unreachable because of the broken link,
the node sends out route error (RERR) messages, so
that other nodes may discard the paths that have
been broken. In Fig. 3, suppose the link between B
and C fails. on detecting the link breakage, B will
find out that D is no longer reachable from B. So B
sends out an RERR to its neighbors saying it is no
longer able to reach D. When A receives this packet,
A knows that D is no longer reachable through B.
In AODV, after the primary route is broken, A does
not have a route to D, so it propagates the RERR
message toward S. Then S will start a route discovery
process to find a new route for D. But in AODVM-R,
A has another route for D. So A replaces the broken
primary route with the alternate route, and E be-
comes the next hop in a route for D. If this alternate
route is not broken, then D is still reachable from
A and so A does not have any unreachable destina-
tion. So A stops forwarding RERR messages. Since
A does not get an RERR message from B, it does
not even know if a route had been broken, and it can
continue to send packets without initiating another
route discovery process.

One important issue to consider in AODVM-R is
the timeout associated with alternate routes. Sup-
pose a primary path has been used for a long time and
then a link on the path breaks. Then it is likely that
the nodes on the alternate paths have not been able
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to exercise the route to the destination and would
have the entry timed out by the time of link break-
age. For example, in Fig. 3, E maintains a route to D
after S performs a route discovery, but if the primary
path S-A-B-C-D works for a long time, the route en-
try in E’s route table will timeout because it did not
have a chance to be exercised for a long time.

To avoid this alternate path timeout problem,
we use REFRESH packets to refresh the alternate
routes, while the primary route is being used. Send-
ing refresh messages on the alternate routes is called
refresh event, and the event can be initiated by the
source or any intermediate routers. When a node
learns a new route the a destination, it starts an
active route timer associated with the entry. The
timer is set to a predefined fixed value. If the route
is not exercised for the certain amount of time, the
timer expires and the route will be discarded from
the route table. In AODVM-R, we maintain an ad-
ditional timer, called the refresh timer. The timer
is also initiated when a new route is learned at the
router. The refresh timer is set to a half of the active
route timeout interval. So for example, if the active
route timeout value is 10 seconds, the refresh timer
is set to 5 seconds. As the primary route is used,
the active route timer is reset, but the refresh timer
stays the same. After 5 seconds, the refresh timer
of a route will timeout. If a packet uses the route
after the refresh timer has been timed out, the node
initiates a refresh event. In Fig. 3, node A forwards
all the packets destined for D through B, because it
is the next hop on the primary route. After 5 sec-
onds, the refresh timer of the entry will timeout. If
a packet destined for D after 5 seconds, A forwards
the packet to B, but sees that the refresh timer has
expired and initiates a refresh event.

In the refresh event, the node will transmit a RE-
FRESH packet to the alternate routes it is maintain-
ing. So node A transmits a REFRESH packet to
E. The REFRESH packet will refresh the routes on
the alternate paths, until it reaches the destination.
When forwarding REFRESH packets, if a node sees
an link error on the alternate paths, the node discards
the route entry from the route table. For alternate
routes, the node doesn’t generate RERR packets, be-
cause it still has the primary route. This REFRESH

packets are main sources of overhead in AODVM-R.
So the period of sending REFRESH packets on alter-
nate routes should be carefully chosen not to put too
much overhead to the traffic while enough to avoid
unused alternate paths from timing out. Note that
refresh events are different from proactive message
exchange, since it is performed only when the pri-
mary path is in use.

The major characteristics of AODVM-R can be
summarized as follows.

• When performing route discovery, the source and
intermediate nodes maintain multiple routes to
the destination.

• If a node detects link error, it tries to repair the
path using alternate routes instead of generating
error messages. If it can use the alternate routes,
the route is repaired without initiating another
route discovery. If the node has no alternate
route, it performs the same way as the original
AODV.

• To exercise the alternate routes, a node periodi-
cally initiates refresh events, on the path that is
being used. In the refresh event, a node trans-
mits REFRESH packets to the alternate routes,
so that the alternate routes on the path to the
destination can be exercised.

4 Experimentation and Results

4.1 Source Oriented Approach
(AODVM)

To test our protocols, we implemented them in ns-
2 [12]. The mobility model used was the random
waypoint whereby a mobile node chooses a random
destination point and a speed up to a maximum spec-
ified value. Once the node has reached the destina-
tion, it will pause for a specified amount of time and
then repeat the process. The radio interface uses the
802.11 MAC protocol and has a data rate of 2 Mbps
and a range of 250m.

Each simulation consisted of 25 nodes in a 750m×

150m area. The traffic was generated such that a
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specified number of senders choose a random desti-
nation and send constant bit rate traffic (CBR) be-
ginning at a randomly selected time. The CBR traffic
was set to a rate of 4 packets per second, where each
packet was 1000 bytes. A specified number of sources
pick a random destination and begins sending data
at some random time uniformly distributed between
the interval [0, 150] seconds. When we refer the the
number of connections in these tests, we are referring
to the maximum number of connections possible in
the given scenario (rather than the exact number of
connections).

Each simulation was ran for 300 seconds. Each
point in the graphs represents the average over ten
simulation runs with the specified input parame-
ters. The input parameters were varied to determine
the effects of increasing the amount of traffic (Sec-
tion 4.1.1) and of increasing mobility (Section 4.1.2
and Section 4.1.3). We then compared AODV and
our protocol (referred to as AODVM since it is the
Modified version) with respect to the following met-
rics.

Average Packet Delay This measures the delay
experienced by each data packet which success-
fully reaches its destination. It is calculated by
recording the time a data packet is sent from its
source and when it is received by the destination.
Packets dropped in transit, for whatever reason,
are not considered in this metric.

Packet Delivery Fraction This metric calculates
how many data packets generated by a source
actually reach the destination. Packets can be
dropped due to an unreachable route or a full
queue, for example. It is calculated by dividing
the number of packets received by their intended
destinations by the total number of packets gen-
erated in the system.

Route Discoveries per Second This is an indica-
tion of how many route discoveries the protocol
induces. To calculate this, we simply record the
number of times a route discovery is initiated di-
vided by the total time of the simulation during
which data is being sent.

Overhead to Data Packet Ratio This calculates
how many control packets are generated as a
function of the number of data packets. Con-
trol packets include RREQs, RREPs, RERRs
and PROBEs. An alternative approach would
be to measure the ratio by bytes instead of pack-
ets. However, since the MAC and energy cost of
sending a packet generally outweighs the cost of
a few extra bytes, we chose to look at the packet
ratio.

In the simulations, link layer loss detection was
used, local repair was not used and ARP was done
statically. When ARP was done dynamically, there
were excessive drops due to multiple RREPs being
generated by the destinations. To correct the prob-
lem would require tweaking some kind of delay be-
tween RREP responses. Since this process was time
consuming and requires investigating ns-2’s MAC
layer interactions, we chose to avoid the issue at this
time. For each run, AODV and AODVM were seeded
with the same value for the simulator’s random num-
ber generator. Each run had a different random
topology, node movement and traffic pattern. How-
ever, the input files used for a particular run were
identical for both protocols.

4.1.1 Varied Loads

The first testing we did evaluates how the protocols
perform as the offered load in the network increases.
For these tests, we varied the number of connections
in the system from 5 to 25 in increments of five. All
the load tests had a pause time of zero seconds and
a maximum speed of 20m

s
.

The packet delay of the protocols, shown in Fig-
ure 4, remains relatively low when the number of
connections is low and there is no significant differ-
ence in AODV and AODVM. When the load increase
to 20 connections, the contention at the MAC layer
delays packets. The packets have to wait longer at
each hop along a path. At 20 connections, AODVM
has a slight reduction in the delay. This may be due
to the fact that when routes are broken, the PROBE
packet is unicast directly to the destination, rather
than waiting for the route discovery broadcasts to
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Figure 4: Packet Delay vs. the Number of Connec-
tions
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Figure 5: Packet Delivery Ratio vs. the Number of
Connections

complete. On the other hand, when the number of
connections grows a little larger to 25, AODV tends
to have less delay. With the increased number of con-
nections comes more cached routes at intermediate
nodes and hence RREPs are generated closer to the
source. In this case, AODV’s caching seems to be
a quicker recovery mechanism than waiting for the
PROBE packet to reach the destination and trigger
a RREP.

Figure 5 shows the decrease in how many pack-
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Figure 6: Route Discoveries per Second vs. the Num-
ber of Connections
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Figure 7: Overhead to Data Ratio vs. the Number
of Connections

ets are delivered as the number of connections in-
creases. The decrease is due to packets being dropped
because of increased collisions at the MAC layer.
AODVM does slightly better with respect to this
metric for some of load values. This is probably a
result of AODVM reducing some of the control over-
head and thereby inducing less collisions for data
packets. There is no apparent reason for the slight
increase in the packet delivery fraction when the load
increases from 20 to 25 connections. The deviation
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is small, less than 0.005, so it may be a statistical
anomaly.

One goal of AODVM was to reduce the number of
route discoveries which are expensive because they
are broadcast. However, they are desirable because
the broadcasting can give a fairly accurate picture of
the network’s current topology. As is seen in Fig-
ure 6, AODVM does appear to slightly reduce the
number of broadcast route discoveries for each of the
various loads. This is due to the fact that AODVM
is sometimes able to set up an alternate route when
an error is detected by unicasting the PROBE rather
than broadcasting a RREQ.

The amount of overhead packets generated by the
protocols should be correlated to the number of route
discoveries. As shown in Figure 7, AODVM is able
to reduce the amount of overhead packets most no-
ticeably at intermediate load (10 to 15 connections).
The overhead reduction comes from less RREQ pack-
ets. However, AODVM will also increase the number
of RREP packets in the system and introduce some
PROBE packets to the system. It should be noted
this metric would be further reduced by AODVM if
the protocols did not use an expanding ring search
during route discovery. This optimization allows
nodes to try searching their nearby area before do-
ing network-wide broadcasts. At a low load, AODV
performs better than AODVM. This is may be, be-
cause of the limited number of flows, AODVM is not
able to keep its path cache very accurate. Therefore,
most of the alternate paths it tries will be invalid,
thereby causing the PROBE procedure and a RREQ
procedure to take place.

From these results, we conclude AODVM is able
to decrease the overhead of a system at intermedi-
ate loads. When the load is high, both protocols
have about the same about of overhead. When the
overhead is decreased, this leads to less contention at
the MAC layer and hence more data packets getting
through. Overall, though, the difference in the pro-
tocols does not appear to be significant as the load
changes.
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Figure 8: Packet Delay vs. Pause Time
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Figure 9: Packet Delivery Ratio vs. Pause Time

4.1.2 Varied Pause Times

To determine the effects of mobility on our protocol,
we first considered the pause times of the nodes. Re-
call that this is how long a node stays at a given point
once it arrives there. For these scenarios, the pause
time was varied from 0 to 300 seconds in increments
of 50. The maximum speed was set to 20m

s
and the

number of connections to 15 for all tests.

In Figure 8, we show how the pause times affect
the delay packets experience. Because the load is
relatively low, the primary contributor to increased
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Figure 10: Route Discoveries per Second vs. Pause
Time
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Figure 11: Overhead to Data Ratio vs. Pause Time

packet delay is packets which wait at the source
while new paths are discovered. Our expectation was
AODVM would be able to decrease the packet delay
in this situation by quickly setting up an alternate
route instead of waiting for a broadcast route dis-
covery to complete. However, the flip side is with
increased mobility, the cached paths become less ac-
curate and hence less usable in the event of an er-
ror. Both protocols performed about the same in our
tests with each doing slightly better for certain pause
times. In general, it appears, AODV may do slightly

better when the pause time is low and AODVM does
slightly better when the pause time is higher. This
is to be expected since at high mobility, AODV’s
immediate route discovery will find paths that are
more likely to be usable. AODVM, however, will
first attempt an alternate path before resorting to
the broadcast.

Figure 9 seems to reinforce this intuition with
AODVM showing slightly better packet delivery frac-
tions at high pause times. However, AODV has a
better packet delivery fraction at higher mobility. It
should be noted all packet delivery for these tests is
greater than 99%. Combined with the results in Sec-
tion 4.1.1, we can see increased load causes a much
more drastic reduction in packet delivery than mobil-
ity. This is due to the MAC layer contention. The re-
duction in delivery fraction in the pause time tests is
primarily due to link layer loss when neighbors move
out of range. AODV appears to generate more stable
routes in the face of high mobility. This may be due
to its route discovery broadcasts resulting in fresher
paths than AODVM’s probe mechanism.

Figures 10 and 11 seem to reinforce this idea that
AODV does better at low pause times. In Figure 10,
AODVM does reduce the number of route discover-
ies at high pause times since the topology is relatively
static and hence the alternate routes are valid more
often. At higher mobility, AODV and AODVM have
about the same number of route discoveries. How-
ever, as shown in Figure 11, the protocols perform
almost identically in terms of total overhead at high
pause times. The only difference comes when AODV
performs slightly better at low pause times. Here
again, AODVM adds extra overhead packets and is
not able to reduce the number of route discoveries.
This results in higher overhead.

From the results, we can conclude AODVM actu-
ally degrades performance when the network topol-
ogy is changing due to increase mobility. However,
when the nodes are more static and do not move of-
ten, AODVM’s alternate paths do provide some ben-
efit.
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Figure 12: Packet Delay vs. Max Speed
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Figure 13: Packet Delivery Ratio vs. Max Speed

4.1.3 Varied Maximum Speeds

Another measure of mobility is increasing the maxi-
mum speed at which nodes move when choosing an-
other location. Recall that the speed at which the
node moves is chosen from a uniform random dis-
tribution from zero up to the maximum speed value.
For these scenarios, the maximum speed a node could
travel was varied from 1 to 20m

s
in increments of 5.

The pause time was set to zero seconds and the num-
ber of connections to 15 for all tests.

In Figure 13, we see virtually no difference in the
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Figure 15: Overhead to Data Ratio vs. Max Speed

performance of the protocols in terms of packet de-
livery. Similarly, Figure 15 shows the protocols both
produce the same amount of overhead in the system.
In Figure 14, AODVM does slightly reduce the num-
ber of route discoveries at 20m

s
. However, the reduc-

tion does not appear significant based on the small
magnitude of the difference and the general trend of
the other results for varying speed.

Only Figure 12 has some interesting results for the
speed tests. The packet delay is fairly sporadic, but
seems to indicate AODVM will decrease the delay
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at lower speeds while AODV has lower delays at in-
creased speeds. However, the difference at any level
of speed is probably not significant as evidenced by
the small range over which the values are distributed.
The deviations are probably just due to sampling er-
ror. Notice that the y-axis in Figures 4 and 8 have a
much larger range than that of Figure 12.

Overall, these test seem to indicate the maximum
speed is not a significant factor in differentiating be-
tween the two protocols. The pause time and offered
load in the system dominate the maximum speed pa-
rameter. Since the tests in this section use zero pause
time and an intermediate load, both protocols seem
to perform equally bad.

4.2 Intermediate Router Recovery
(AODVM-R)

In this section we present simulation results for the
AODVM-R protocol. The simulation model and the
parameters used in the simulations are the same
as those used in the simulations for AODVM (ex-
plained in section the previous section), except for
one thing. There is no PROBE message in AODVM-
R, but AODVM-R has REFRESH messages. So in
AODVM-R, RREQ, RREP, RERR, and REFRESH
messages are the overhead packets.

The metrics we measure are also the same as in the
previous section: average packet delay, packet deliv-
ery ratio, route discoveries per second, and overhead
to data packet ratio. We vary the number of con-
nections, pause time, and the maximum speed. In
the graphs, “AODV” refers to the original AODV
protocol, and “AODVM-R” refers to the proposed
protocol.

4.2.1 Varied Loads

In these simulations, we vary the number of flows in
the network to see the impact of network load on
different metrics. The number of flows range from 5
to 25. The maximum speed of mobile nodes are fixed
to 20m/s, and pause time is fixed to 0.

In Fig. 16, we can see that AODVM-R does slightly
better than AODV in terms of packet delivery. The
number of dropped packets is smaller in AODVM-R.
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Figure 16: Packet Delivery Ratio vs. Number of Con-
nections

But the as seen in the graphs, the difference is not
so significant. In AODV, if the route to the desti-
nation breaks, the packets that were being delivered
through that route gets dropped because the inter-
mediate nodes do not know how to reach the des-
tination. But once the source performs route dis-
covery, the subsequent packets will be delivered to
the destination, unless the destination is totally dis-
connected from the source. AODVM-R tries to save
those packets that were being delivered through the
broken route. The intermediate nodes, if they were
maintaining alternate routes, will not drop the packet
but deliver it to the next hop on the alternate path.
If the destination can be reached through the alter-
nate path, the packet can be delivered correctly, even
though the delay might be higher. But if the desti-
nation becomes totally disconnected from the source,
there is no way that AODVM-R can deliver the pack-
ets. So in this case, both protocols will drop packets
anyway. So the main difference in packet delivery
ratio comes from the saved packets that were being
delivered through the broken route.

As the network load increases, the packet deliv-
ery ratio drops in both protocols, mainly because of
increased contention at MAC layer. So the rate at
which the packet delivery ratio decreases is similar in
two protocols.

Fig. 17 shows the average packet delay of two pro-
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Figure 17: Average Packet Delay vs. Number of Con-
nections

tocols. As the graph shows, the packet delay is higher
in AODVM-R. This is due to the following reasons.
In AODVM-R, if a route is repaired using alternate
routes, it is likely that the repaired route has a longer
hop count than the actual optimal route from the
source to the destination. Whereas in AODV, a new
route discovery is performed every time the route is
broken, and the route with shortest hop count is cho-
sen. This is one reason that AODVM-R has longer
delay than original AODV. Another reason comes
from the delay of repairing the broken route. Ev-
ery time a route fails, AODV has to pay for the delay
of route discovery. In AODVM-R, if the route is re-
paired successfully using the alternate routes, then
the delay for route discovery is saved. But, if the al-
ternate path is also broken so that the source would
have to initiate a route discovery anyway, then the de-
lay penalty becomes higher, because the source per-
forms route discovery after the attempt to use alter-
nate routes fails. Also in AODVM-R, the REFRESH
messages in AODVM-R also increases contention at
the MAC layer and thus affects the packet delay.

In Fig. 19, it seems that AODVM-R succeeds in re-
ducing the number of route discoveries. But still the
reduce in amount overhead is not so significant, as
shown in Fig. 18. The main reason we want to avoid
route discoveries is because flooding the network with
route request messages is a high overhead. But in
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Figure 18: Overhead to Data Packet Ratio vs. Num-
ber of Connections

AODVM-R, the benefit of reduced route discoveries
is diminished by the refresh messages. Refresh mes-
sages are not broadcast, but they are sent to the al-
ternate routes of the active path periodically. So in a
network with low mobility, where the routes are not
frequently broken, the overhead of refresh messages
will be higher than the overhead of broadcasting the
route request. Since the refresh message is a major
source of overhead in AODVM-R, precautions must
be taken to minimize the overhead. This issue is dis-
cussed later in this section.

4.2.2 Varied Maximum Speed

The final set of simulations were done varying max-
imum speed of the mobile nodes. The mobile nodes
may move at a random speed between 0 and the spec-
ified maximum speed. The maximum speed is varied
from 0 to 25m/s. Number of flows is fixed to 15, and
pause time is 0 in the simulations.

As the pause time increases, the network becomes
more static, and topology change occurs less fre-
quently. So as shown in Fig.20, the packet delivery
ratio goes up for both protocols, as the pause time
increases. AODVM-R performs slightly better than
AODV, but the difference is not so significant. Fig.20
shows the packet delay of AODVM-R is worse than
AODV. The difference in packet delay is more signif-
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Figure 19: Route Discoveries per Second vs. Number
of Connections
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Figure 20: Packet Delivery Ratio vs. Max Speed

icant when the pause time is smaller, because high
mobility leads to more frequent route failure, and re-
paired routes in AODVM-R tend to be suboptimal
than rediscovered routes in AODV.

Fig. 22 shows that AODVM-R reduces number of
route discoveries using alternate paths. The differ-
ence between AODV and AODVM-R is significant
with medium and high mobility, but there is not much
difference with low mobility. If the mobility is low,
topology is not frequently changing, so there is not
much need for route discoveries (less than 1 in every
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Figure 21: Average Packet Delay vs. Max Speed

10 seconds). So AODVM-R does not gain much ben-
efit. As the mobility increases, AODVM-R repairs a
lot of broken routes using alternate routes, reducing
the number of route discoveries.

The amount of overhead is shown in Fig. 23. With
low mobility, AODVM-R has higher overhead than
AODV. Because refresh messages are sent periodi-
cally as long as the route is being used. So AODVM-
R performs better than AODV in terms of overhead,
only if there are frequent route failures so that the
overhead of route recovery or new route discovery
dominates the overhead. As the maximum speed in-
creases, AODVM-R has lower overhead than AODV.

4.2.3 Varied Pause Times

Here we vary the pause time of mobile nodes. In the
random waypoint model, every time a node moves
to a location, it pauses for a specified time before
it starts moving toward a new location. The pause
times are varied from 0 to 300 seconds. 0 pause time
means the nodes are always moving. A pause time
of 300 seconds means the nodes only move once and
stops for the rest of simulation time, because the sim-
ulation time is 300 seconds. In these simulations, the
maximum speed of each node is fixed to 20m/s, and
number of flows is 15 in each simulation.

The results of these simulations lead to similar ar-
guments as previous simulations varying maximum
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Figure 22: Route Discoveries per Second vs. Max
Speed
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Figure 23: Overhead to Data Packet Ratio vs. Max
Speed

speed. Low pause time means high mobility, whereas
high pause time means low mobility. Although
Fig. 24 shows the packet delivery ratio is slightly
higher in AODVM-R, the packet delay is higher in
AODVM-R, as shown in Fig. 25. The difference in
packet delay is not so significant with longer pause
time, but becomes significant as the pause time be-
comes smaller. As shown in Fig. 26 and 27, AODVM-
R succeeds in reducing the number of route discover-
ies, but still the overhead is not significantly reduced
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Figure 24: Packet Delivery Ratio vs. Pause Time
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Figure 25: Average Packet Delay vs. Pause Time

because AODVM-R has refresh message overhead.
When mobility is low, the overhead of route discover-
ies lessens, but the amount of refresh messages sent
in AODVM-R stays the same. So AODVM-R per-
forms worse than AODV in terms of overhead, when
the mobility is low.

In overall, AODVM-R seems to succeed in reducing
the number of route discoveries significantly, but at
the cost of refresh message overhead. The simulation
results have shown that the refresh message overhead
in AODVM-R is significantly large that it diminishes
the benefit gained from reducing the number of route
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Figure 26: Route Discoveries per Second vs. Pause
Time
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Figure 27: Overhead to Data Packet Ratio vs. Pause
Time

discoveries. Also, non-optimal routes and attempt to
use broken alternate paths makes the packet delay
of AODVM-R higher than that of AODV. In total,
AODVM-R does slightly better in terms of packet de-
livery ratio, but does worse in terms of packet delay.

Since the refresh message overhead is shown to be
significant in AODVM-R, we can consider changing
the refresh timeout to reduce the overhead. In the
basic scheme of AODVM-R, we set the refresh time-
out as half of the active route timeout (explained in

Section 3.2). This is be a conservative approach. We
can set the refresh timeout to be a little smaller than
the active route timeout, for example 90%. But then
the risk of false timeout becomes higher. Suppose
the active route timeout is 10 seconds, and we set
the refresh timeout to be 9 seconds. Then a packet
that uses the primary route after 9 seconds initiates
refresh event for alternate routes. So if there is no
packet that uses the primary route between 9 and
10 seconds, the alternate routes will timeout, even
though they should have been refreshed. Another op-
tion is to eliminate the periodic refresh events, and
do not apply timeouts to the alternate paths. If we
eliminate the refresh events, the total overhead will
become much smaller. But since the alternate paths
have infinite life time, they are more likely to be stale
when they are ready for use. If we use refresh mes-
sages, these messages can detect failures in alternate
routes and discard the broken routes from the route
table.

Also, if we use alternate routes that are maintained
at the routers, the repaired route is likely to be sub-
optimal. If many parts on a path are repaired using
alternate routes, the route would be very inefficient
in terms of hop counts. This results in higher packet
delay. Also, longer hop distance means more number
of packet transmissions take place before the packet is
delivered to the destination. If average hop distance
in AODVM-R is twice of average hop distance in
AODV, then AODVM-R must generate twice amount
of traffic to achieve the same goodput. So large av-
erage distance is one of the factors that diminish the
benefit gained from reducing number of route discov-
eries.

5 Conclusion

For AODVM, we conclude that the added complexity
of this protocol and extra control packet overhead are
not justified since the impact upon key metrics when
compared to AODV is minimal. The major reasons
for this are when the topology is changing quickly,
sources will rarely have more than one alternate path
to a destination and an alternate path that does ex-
ist will probably be stale and the PROBE procedure
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will fail. Another metric, which we did not have time
to test, would be to see how far the lengths of the
paths generated by each protocol deviates from the
optimal. Intuitively, AODV should do better in this
metric because its route discovery procedure would
find the path AODVM is probing plus any shorter
paths which may exist. The longer paths would also
lead to more packet transmissions in the system as a
whole since data packets would have to be transmit-
ted over more hops to reach the destination. Another
thing to note is if local repair is turned on, AODVM’s
performance is further hindered since intermediate
nodes will try to repair a path first and delay telling
the source. This increases the probability the source’s
alternate paths would be out of date. Overall, it re-
sults seem to indicate the major source of AODVM’s
ineffectiveness is the lack of opportunity to use the
PROBE mechanism. When cached routes cannot re-
ply with alternate path information, the RERRs re-
move all paths with the broken link before probing
and the learning of a fresher route causes all known
alternate routes to be invalidated, the protocol does
not leave much opportunity for the probe procedure.
Hence, the number of PROBE packets sent will be
dominated by the number of other control packets in
the system.

AODVM-R is also not so successful, because al-
though it reduces number of route discoveries, other
sources of overhead are introduced and the packet de-
lay becomes higher. To maintain alternate routes, the
refresh message overhead must be introduced, regard-
less of how fast the network is changing. So if network
is static, we do not gain any benefit from introducing
this new overhead. If there is high mobility in the
network so that the route is frequently broken, then
AODVM-R reduces the amount of overhead, because
it avoids expensive route discoveries using alternate
routes. But as the mobility increases, the possibility
of alternate routes being stale also increases. So the
performance heavily depends on the given topology.
The main reason of AODVM-R’s higher packet delay
is due to long hop counts of repaired routes. Also,
if repairing path through alternate routes fails, the
delay of route discovery is higher than AODV. As
mentioned in the previous section, tuning the refresh
timeout value might lower the overhead of AODVM-

R. This is left as a future work.

6 Work Division

Matt Miller worked on the source oriented ap-
proach described in Section 3.1 and tested in Sec-
tion 4.1. Jungmin So worked on the intermediate
router recovery approach described in Section 3.2 and
tested in Section 4.2.
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