Minimizing Energy Consumption in Sensor Networks Using a Wakeup Radio

Matthew J. Miller and Nitin H. Vaidya

IEEE WCNC March 25, 2004

Problem Statement

- Sensor networks with limited resources

 Energy
 Queue size for packets

 Address the power save problem
 - When should a node switch its radio to the sleep state and for how long?

Motivation

- Sleep mode power consumption is much less than idle power consumption
- Sensors have limited queue size

Packets may be dropped if wakeups are too far apart

Radio State	Power Consumption (mW)
Transmit	81
Receive/Idle	30
Sleep	0.003

Power Characteristics for a Mica2 Mote Sensor

Power Save Design Alternatives

Timer-Based

When a node enters sleep mode, it sets a timer to wakeup at a pre-determined time

On-Demand

A sleeping node can be woken at any time via out-of-band communication

Hybrid

Timer-Based plus On-Demand

Wakeup Radio

- Add second, low-power radio to wakeup neighbors on-demand
- Low-power could be achieved by:
 - Simpler hardware with a lower bit-rate and/or less decoding capability
 - Periodic listening using a radio with identical physical layer as data radio (e.g., STEM)
 - Used in this work

Directed vs. Broadcast Wakeups

Directed

Encode ID of node to be woken in the wakeup signal

Broadcast

- Wakeup signal awakes entire neighborhood (e.g., busy tone)
- Only have to detect energy on channel rather than decode packet
 - Simple hardware
 - Small detection time

Sleeping Protocol

- Sense wakeup channel periodically
- If wakeup channel sensed busy:
 - □ Turn on data radio
 - Receive *filter* packet on data channel
 - □ If filter is for another node, return to sleep
- Filter is like RTS, but can specify multiple receivers

Sending Protocol

- Transmit wakeup signal long enough for all neighbors to hear it
- Transmit filter packets specifying intended receiver(s)
- Transmit data to receiver
- Entire neighborhood wakes up long enough to receive filter
 - □ Large energy cost
 - □ Referred to as a *full wakeup*

Full Wakeup Example

Sender Data Radio Transmissions	F D
Sender Wakeup Radio Transmissions	WAKEUP SIGNAL
Receiver Wakeup Radio Status	
Receiver Data Radio Status	

Time -----

Timeout Triggered Wakeups

- Nodes do a timer-based wakeup on the data radio
 - Referred to as timeout triggered wakeup
- If the node cannot wait until the timer expires, it does a full wakeup
 - Do a full wakeup when a specified queue threshold (L) is reached
- Main contribution: adding timeout triggered wakeups in addition to full wakeups

Timeout Triggered Wakeups (cont.)

- Timeout computed based on recent traffic rate
 - Packets interarrival times have exponential distribution
- Sender will compute timeout value and piggyback on data packets
 No absolute synchronization required

Timeout Tradeoff

Too small

Nodes wakeup when there are no pending packets

Too large
 Full wakeups are more likely to occur

Analysis

- Goal: Find T value that minimizes the energy per bit.
- One sender and one receiver
- Single hop network
- *N*=8, *L*=2, *R*=1.0

Analysis (cont.)

Based on analysis, we observe that the optimal T value (T_{opt}) is:

$$T_{opt} = \gamma \frac{L}{R}$$

where γ is a function of *N* and *L*.

• Compute γ offline, given N and L, and estimate rate based on weighted average of packet interarrival times

Protocols Tested

Rate Estimation

 \Box Proposed protocol. γ is input for *L*=2 and *N*=8.

Static Optimal

□ Static value of *T* which minimizes energy is input

T=∞

- □ No timeout triggered wakeups. Full wakeups occur when L=2 packets are in the queue.
- STEM
 - □ Protocol proposed in [Schurgers02Optimizing]. Special case of our protocol with $T=\infty$ and L=1.

Energy Usage

Time-Variant Traffic

- Rate periodically switches between 0.2 and 2.0
- The α parameter represents how frequently rates are switched
 Smaller α means more frequent switches

Time-Variant Traffic

Conclusion and Future Work

- Protocol dynamically adjusts timeout based on traffic to minimize energy consumption
 - Performs very close to the static optimal
 - Performs better than protocols which do not use timeout triggered wakeups
- Future work
 - Adapt for multihop and multiflow settings with increased contention
 - □ Use multiple wakeup channels

Ŋ9