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Abstract— As devices become more reliant on battery power, it
is essential to design energy efficient protocols. While there is a
vast amount of research into power save protocols for unicast
traffic, relatively little attention has been given to broadcast
traffic. In previous work [1], we proposed Probability-Based
Broadcast Forwarding (PBBF) to address broadcast power save
by allowing users to select a desired tradeoff between energy
consumption, latency, and reliability. In this paper we extend our
previous work in two ways. First, we introduce a new parameter
that allows a tradeoff between reliability and packet overhead
to give users more options. Second, we implement PBBF on
the TinyOS platform [2] to evaluate it beyond the analysis and
simulation from our previous work. Our evaluation demonstrates
the tradeoffs possible using PBBF on sensor hardware.

I. INTRODUCTION

The relatively small improvement in battery energy density

recently [3] necessitates the need for energy efficient protocols

to control the rate at which energy is being depleted. To

this end, many power save protocols have been proposed

to increase the time that a device’s radio is sleeping while

still providing an acceptable latency and throughput. Work in

this domain focuses almost exclusively on unicast traffic. Our

previous work on Probability-Based Broadcast Forwarding

(PBBF) [1] was the first to explore the energy-latency tradeoff

for broadcast traffic. Multihop broadcast is used in many

wireless network applications. Some common uses of multihop

broadcast include discovering routing paths, sinks querying

sensors for data, and distributing code updates throughout the

network.

With respect to broadcast, power save protocols generally

expose two options to the user. First, if no power save is used,

then the broadcast can achieve a relatively low latency, but

at the expense of large energy costs to listen for broadcasts.

The second option is to use the power save protocol. This

option conserves much less energy than the first, but has a

high latency that may be unacceptable to some applications.

In previous our work [1], we proposed a lightweight pro-

tocol to augment existing protocols that allows broadcast
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propagation to be more energy efficient while still achieving

a desired latency. In this paper, we extend that work in two

ways:

• Introduce a parameter to control the reliability-overhead

tradeoff: Previously [1], we proposed two parameters

(discussed in Section III) that present tradeoffs in energy

consumption, latency, and reliability. By introducing a

third parameter, described in Section IV, we allow an-

other tradeoff in reliability and packet overhead.

• Implement PBBF in TinyOS [2] on top of B-MAC [4]:

Our previous work explored PBBF via analysis and

simulation. In this work, we implement the protocol in

TinyOS [2], as described in Section V, and evaluate

the performance in Section VI. Also, our previous work

demonstrated PBBF on top of 802.11 Power Save Mode

(PSM) [5]; in this work it is implemented on top of B-

MAC [4] to demonstrate PBBF’s versatility.

In Section II we survey some related work in this area. We

review our previous work in Section III and then present a new

extension in Section IV. Section V discusses our TinyOS [2]

implementation. We evaluate the PBBF implementation in

Section VI and survey lessons learned in Section VII. Sec-

tion VIII concludes our paper.

II. RELATED WORK

There have been many power save techniques proposed

for unicast traffic. In [6], the authors survey many of these

protocols. Our work [1] was the first to study power save

in the context of broadcast traffic by proposing PBBF which

is detailed in Section III. PBBF uses probability-based for-

warding for energy efficiency. While PBBF was the first

to propose this for power save, other protocols have used

probabilistic broadcast forwarding for other reasons. Most

notably, Haas et al. [7] designed a protocol where nodes only

forward a broadcast with some probability, p. By doing this,

the broadcast is capable of reaching most of the nodes in the

network while reducing the overhead. This is based on the

observation that a broadcast flood typically has a high level of



redundancy [8]. With PBBF, we try to use this redundancy to

reduce the energy consumed by the broadcast.

TinyOS [2] is an operating system designed at Berkeley

specifically for sensors. It favors simplicity and clean design

by using a single-thread of execution and a component-based,

modular architecture. B-MAC [4] is TinyOS’s default power

save protocol. In Section V, we integrate PBBF on top of B-

MAC. B-MAC uses preamble sampling which means that the

packet preamble is long enough to be detected by all nodes

that are periodically sampling the channel in between sleep

periods (i.e., the preamble must be slightly longer than the

sleep time between sampling periods). When sleeping nodes

sample the channel and detect the preamble, they remain on

to receive the entire packet. See [4] for more details.

III. PROBABILITY-BASED BROADCAST FORWARDING [1]

In this section, we review our previous work. Probability-

Based Broadcast Forwarding (PBBF) can be used in con-

junction with any power save protocol that has the following

characteristics:

1) Nodes are scheduled to sleep at certain times and can

be awakened on-demand when a neighbor wishes to

communicate.

2) A mechanism exists which ensures that all of a node’s

neighbors will be awake at the same time to receive a

broadcast.

In [1], we use IEEE 802.11 PSM [5] as the base protocol

to demonstrate PBBF and in Section V, we use B-MAC [4] as

the base protocol. The goal of PBBF is to achieve a specified

reliability, with high probability, while allowing a wide-range

of tradeoffs in energy consumption and latency. Specifically,

we focus on two definitions of reliability in this work: (1) the

average fraction of nodes that receive a broadcast and (2) the

average fraction of broadcasts received by a node.

PBBF introduces two new parameters to a power save

protocol: p and q. The first parameter, p, is the probability

that a node rebroadcasts a packet in the current active time

even though not all neighbors may be awake to receive the

broadcast. With probability (1−p), the node will wait to send

the packet according to the power save protocol. The second

parameter, q, represents the probability that a node remains

on after the active time when it normally would sleep (the

length of time that a node remains on is a parameter of the

power save protocol being used). With probability (1− q), the

node sleeps as it would in the original power save protocol.

Even with these modifications, a node still only rebroadcasts

a packet once. In Section IV, we introduce a third parameter

that allows a node to rebroadcast a packet twice for added

reliability.

Figure 1 shows pseudo-code of changes to any sleep

scheduling protocol required for PBBF. The original sleep

scheduling protocol is a special case of PBBF with p = 0 and

q = 0. The always-on mode (i.e., no active-sleep cycles) can

be approximated by setting p = 1 and q = 1. PBBF may be

slightly different from always-on in this case. For example, in

synchronous protocols, there may still be byte overhead (e.g.,

SLEEP-DECISION-HANDLER()
1 /* Called at the end of active time */
2 /* If stayOn is true, then remain on; else sleep*/
3 stayOn← false
4
5 if DataToSend = true or DataToRecv = true
6 then
7 stayOn← true
8 else if UNIFORM-RAND(0, 1) < q
9 then stayOn← true

RECEIVE-BROADCAST(pkt)
1 /* Called when broadcast packet pkt is received */
2 if UNIFORM-RAND(0, 1) < p
3 then SEND-BROADCAST(pkt)
4 else ENQUEUE(nextPktQueue, pkt)

Fig. 1. Pseudo-code for PBBF.

sending advertisements) and temporal overhead (i.e., PBBF

cannot send data packets during the advertisement window).

Intuitively, we can see that the p and q parameters will have

the following effects.

Energy: As q increases, energy consumption increases.

Changing p has a negligible effect on energy consump-

tion.

Latency: As q increases, latency decreases, provided that p >

0. As p increases, latency decreases, provided that q > 0.

Reliability: As q increases, reliability increases, provided that

p > 0. As p increases, reliability decreases, provided that

q < 1. When p increases, there is a greater probability

that a node rebroadcasts the packet immediately. Thus,

for a fixed q < 1, there is a greater chance that some

of its neighbors do not receive the broadcast since they

chose to sleep.

If the conditions listed above (e.g., p > 0 for latency and

reliability as q increases) are not met, then the metric is not

affected in that situation.

IV. PBBF EXTENSION

As mentioned in Section III, the PBBF parameters p and q

provide a tradeoff in energy consumption, latency, and relia-

bility for broadcast dissemination. Now, we propose another

parameter that can be used in PBBF that induces an overhead

tradeoff in addition to the three aforementioned metrics (i.e.,

energy consumption, latency, and reliability). We denote this

parameter as r and it behaves as follows. When a sensor

decides to immediately transmit a broadcast packet according

the p parameter (as described in Section III), it will broadcast

the packet a second time with probability r. If the packet is

broadcast for a second time, then the second transmission is

advertised according to the sleep scheduling protocol’s original

protocol. The pseudo-code for this PBBF extension is shown

in Figure 2.

We can see that the r parameter induces an overhead

tradeoff into PBBF. By increasing r, we increase the reliability



RECEIVE-BROADCAST(pkt)
1 /* Called when broadcast packet pkt is received */
2 if UNIFORM-RAND(0, 1) < p
3 then SEND-BROADCAST(pkt)
4 if UNIFORM-RAND(0, 1) < r
5 then ENQUEUE(nextPktQueue, pkt)
6 else ENQUEUE(nextPktQueue, pkt)

Fig. 2. Pseudo-code for r parameter in PBBF.

of a broadcast at the expense of increasing the packet overhead

in the network. At the extreme, if r = 1, then reliability should

be close to 100% regardless of the p and q values, but each

node is broadcasting every packet twice. This gives users yet

another control parameter to achieve a desired tradeoff in the

energy consumption, latency, reliability, and overhead planes.

V. IMPLEMENTATION

We implemented PBBF in TinyOS 1.1.15 [2] for the Mica2

Mote [9] sensors. This serves as a proof-of-concept for the

protocol and provides results from a real-world communication

environment. PBBF is implemented on top of a different sleep

scheduling protocol than the 802.11 PSM protocol that was

the basis for the simulations in [1]. This demonstrates the

versatility of PBBF. Additionally, we added the extension to

the PBBF protocol described in Section IV.

We chose to implement PBBF in TinyOS [2] since this

is a widely used open-source operating system designed for

sensors. Its adoption in the research community has led

to a relatively stable system with a significant amount of

documentation. For a hardware platform, the Mica2 [9] and

Telos [10] Motes were available. We chose to use the Mica2

platform since it has two power save protocols implemented

for it.

The two power save protocols available on the Mica2

platform were S-MAC [11] and B-MAC [4]. Either would have

been an appropriate choice for our PBBF implementation. We

chose to use B-MAC over S-MAC for several reasons. First,

B-MAC is implemented in the core of TinyOS whereas S-

MAC is an add-on that must be incorporated into the TinyOS

separately. Thus, B-MAC has undergone more rigorous testing

since it is used by nearly everyone that downloads TinyOS and

does not require an extra effort to get it working. Second, the

code for B-MAC was less complex and easier to understand.

Thus, it was easier to make the necessary modifications for

PBBF. Finally, B-MAC, unlike S-MAC, does not require time

synchronization. This eliminates a major source of potential

experimental errors.

As described in Section II, B-MAC uses preamble sampling

for in-band power saving. Sensors wake up according to a

specified duty cycle and carrier sense the channel. If the

channel is idle, the sensor returns to sleep until the next sched-

uled carrier sense period. If the channel is busy, the sensor

continues listening to channel in anticipation of receiving a

pending data packet. When a node has data to transmit, it

attaches a preamble longer than the duty cycle in order to

guarantee that all nodes will carrier sense the channel at some

point during the preamble and continue listening.

To implement PBBF on B-MAC, we make the following

changes:

• When a node carrier senses the channel idle during its

duty cycle, with probability q, it continues listening to the

channel until its next scheduled carrier sensing period.

• When a node has a packet to rebroadcast, with probability

p, it transmits the packet without the long preamble.

In this situation, most of the node’s neighbors will not

carrier sense the preamble and, hence, not receive the

broadcast packet at that time. With probability (1−p), the

node will rebroadcast the packet with the long preamble

so that its neighbors will carrier sense it and receive the

subsequent data packet.

• When a node rebroadcasts the packet without the long

preamble (as discussed in the previous item above), with

probability r, it will broadcast the packet a second time.

This second broadcast will use the long preamble.

The architecture we used for our implementation is shown in

Figure 3. The solid arrows in the figure represent the interface

that connects two modules. The notation A
I
→ B indicates that

component B implements interface I and that component A

uses B’s implementation of interface I . The dashed arrows

indicate the message type that the connected module uses

to send and/or receive via GenericComm. Details about

the interfaces and packet types are in Appendix I. The

GenericComm, UART, and CC1000Radio1 components are

already implemented in TinyOS. We made some modifications

to the CC1000Radio modules, but used these components, for

the most part, in their current TinyOS instantiation. We now

describe the functionality of each component from Figure 3.

DummyBcastSrc: This is the application that we use to test

PBBF. The node with ID 0 is chosen as the broadcast

source and transmits a broadcast periodically according

to a desired rate. The broadcast does not contain any

useful data. Non-source nodes that receive broadcast

packets pass information to the Stats module to collect

experimental data.

DummyBcastSrc also serves as the link to the se-

rial port (UART) for communication with a computer.

The module also passes control packets (e.g., what p,

q, and r parameters to use for a particular run) to

CtrlPktHandler. Finally, it maintains all the timers

for when an experimental run ends and when statistics

are sent back to the broadcast source.

SimplePbbfBcast: The main functions of this module are du-

plicate suppression and queuing for DummyBcastSrc’s

broadcast packets. Control packets are also passed to

CtrlPktHandler and Stats is notified of every

broadcast sent or received.

CtrlPktHandler: This module handles incoming control

packets by setting the p, q, and r parameters to the values

1CC1000Radio is an abstraction for the three modules listed in the dotted
lines.
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Fig. 3. TinyOS architecture for PBBF implementation. The solid rectangles are modules (CC1000Radio is an abstraction for the three modules listed in
the dotted lines). The solid arrows represent the major interface(s) that connect modules. The incoming dashed lines to GenericComm represent the message
types the connected module uses.

specified in the packet. This is done via its connection to

Pbbf.

Stats: This module keeps track of statistics for our experi-

ments and aggregates the information in packets to send

back to the broadcast source. Via DummyBcastSrc, it

keeps track of the end-to-end latency of received packet

as well as the total number of unique, application-layer

received packets. SimplePbbfBcast informs Stats

of the total number of data packets sent and received.

Pbbf signals to Stats when a packet was transmitted

twice due to the r parameter (as discussed in Section IV).

CC1000Radio signals this component whenever the

radio switches to and from sleep mode to track the total

fraction of time spent sleeping.

This module also provides a basic end-to-end retrans-

mission scheme for added reliability in reporting experi-

mental stats. We found this to be somewhat useful since

the link layer retransmission scheme seemed to occasion-

ally fail. One limitation of the link layer retransmissions

in TinyOS is that no receiver is specified in the ACK

packets. Thus, it is possible that both S1 and S2 send a

packet to D at about the same time and, for whatever

reason, D receives only, say, S1’s packet. However, the

ACK send by D, which is intended for S1 in this example,

will also be overheard by S2 and S2 will considered

its packet successfully received since the ACK does not

specify if it is for S1 or S2. However, we did not run tests

to determine if this was the source of occasional failures

for link layer retransmissions since this was a peripheral

issue that the end-to-end retransmissions seemed to fix.

We mention it, though, as a possibility.

GenericComm: (Existing TinyOS module) This serves pri-

marily to multiplex and demultiplex packets in TinyOS

based on the packet type. Essentially, the packet type



serves the role that ports do in traditional TCP/UDP

communications

UART: (Existing TinyOS module) This component provides

the lower level communication with the serial port.

Pbbf: This is the actual implementation of the PBBF pro-

tocol. It is placed between GenericComm and the

CC1000Radio components. GenericComm is analo-

gous to the network layer and CC1000Radio provides

the medium access and the physical layer.

The p, q, and r values that Pbbf uses are input from

CtrlPktHandler. B-MAC notifies Pbbf of a deci-

sion point for whether to sleep via the PbbfNotifier

interface. At this point, Pbbf compares the current q

value to a random number to decide whether to tell

the radio to sleep, as would be normal operation, or

continue listening to the channel, which is part of PBBF.

For every packet received from GenericComm, PBBF

decides, based on the p and r values, whether to use

a long preamble and whether to transmit the packet

twice, respectively. This layer also provides link layer

retransmissions since this feature is not implemented in

lower layers (i.e., CC1000Radio).

CC1000Radio: (Existing TinyOS modules) These components

provide the lower level communication with Chipcon’s

CC1000 radio [12] found on Mica2 Motes. Additionally,

the B-MAC [4] implementation is integrated into these

components.

VI. EXPERIMENTAL RESULTS

To test our implementation, we set up the following experi-

ments. The broadcast source, with ID 0, was attached directly

to a laptop via a MIB510CA board. This sensor also served as

the sink for reporting statistics back to the laptop. Our Mica2

Motes used the 433 MHz frequency. We were constrained to

using only nine Motes total, so the other eight Motes served

as broadcast receivers.

Initially, we planned a multihop topology. However, statis-

tics reporting proved far too unreliable for the environment in

which we attempted this (see Section VII for more details).

Thus, we only experimented on a topology where all of

the devices were within range of the broadcast source (and

each other). This setup was also beneficial since a limited

number of Motes were available and PBBF relies on some

amount of density to operate efficiently. Most importantly, this

simple scenario is sufficient for demonstrating some of the key

properties of PBBF.

In our experiments, the source transmitted a broadcast every

2.5 s. Each experiment ran for 30 s, which results in 11 packets

being sent per run (the first packet is not sent immediately

when the test commences). Each data packet uses the standard

TinyOS format with 2 synchronization bytes, 5 header bytes,

2 CRC bytes, and a payload of 29 bytes. The default preamble

adds an additional 8 bytes, though, as described in Section II,

B-MAC increases the preamble length according to how much

power saving is desired. In our tests, we set the B-MAC

parameters to have a duty cycle of 135 ms and preamble

size of 371 bytes. We note that when a sender decides to

transmit immediately, according to the p parameter in PBBF,

the preamble size is set to the default 8 bytes for that particular

packet. We also note that the version of B-MAC we used

carrier senses the channel for 8 ms once every duty cycle. If

the channel is not carrier sensed idle, then B-MAC extends

the time that it is awake for 32 ms. At the end of this 32 ms

interval, B-MAC carrier senses again and will sleep or extend

its listening for another 32 ms depending on if the channel is

idle or busy, respectively. For statistics collection, once the

sensor has run the experiment for the specified 30 s length, it

switches power save off for 10 s and reports its data.

The metrics that we measured are:

• Fraction of Time Not Sleeping: Obtaining fine-grained

energy measurements for the Motes requires special

equipment. Thus, we use a coarse-grained metric where

we track how much time a node spends with its radio

not in the sleep state over the course of an experiment.

Thus, the larger the fraction of time not sleeping, the

more energy is generally being consumed by the radio.

• Average Broadcast Latency: This is the average latency

from the time a packet is sent at the sender’s application

layer until the data begins transmission over the radio

(i.e., after the preamble and synchronization bytes have

been transmitted). For this, we use the time stamping

implementation described in [13]. Again, this is not as

fine-grained of a metric as we would like. However,

this technique obviates the need for time synchronization

among the nodes which would induce a large amount

of complexity and overhead to our implementation. We

only compute the latency for nodes that received a given

broadcast.

• Unique Data Packets Received: We measure the average

fraction of broadcasts sent by the source that are received

by listening nodes.

• Total Data Packets Received: This is a measure of the

receive overhead of the protocol. It is the average total

broadcasts received divided by the number of broadcasts

sent by the source. Since sensors filter duplicate broadcast

packets (with respect to the source and sequence number),

the total data packets received is greater than or equal to

the unique data packets received.

• Total Data Packets Sent: This is a measure of the

sending overhead of the protocol. It is the average to-

tal broadcasts sent by a node (excluding the broadcast

source) divided by the number of broadcasts send by the

source.

To test the effects of p, q, and r, we set their values to

0.0, 0.3, 0.7, and 1.0 and ran one experiment (with multiple

broadcasts) for each of the 64 possible combinations of

these three variables using these four values. For clarity of

presentation, we omit some of the combinations in our graphs.

In Figure 4, we show the effects of p on energy consump-

tion. When q = 1, obviously no energy savings occurs. When

r = 0, the energy consumption decreases with p because less



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1

F
ra

c
ti
o

n
 o

f 
T

im
e

 S
p

e
n

t 
N

o
t 
S

le
e

p
in

g

q = 0, r = 0
q = 0, r = 1
q = 1, r = 0
q = 1, r = 1

p
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packets are being received by the nodes (it is proportional to

the corresponding curve shown in Figure 6). If a sensor is

receiving only a few packets, then it will be sleeping most of

the time. When r = 1, every packet transmitted immediately is

also transmitted a second time using the power save protocol.

This results in increased overhead and reliability. However,

since more packets are being sent and received, the energy

consumption is greater than for r = 0.

The curve is approximately flat when q = 0 and r = 1
because the number of transmissions that follow the B-MAC

power save protocol remain the same. In B-MAC, such trans-

missions, with their long preambles, consume significantly

more energy than the immediately sent packets. Thus, the

dominating energy consumption component, the packets sent

using the power save protocol, remains constant. The number

of immediate sends increases as p increases, but the effect on

the curve is small.

The effect of p on latency is shown in Figure 5. We can see

how p improves the latency when q = 1. This improvement

comes at the expense of energy consumption. The sharp drop-

off in the q = 0, r = 0 case occurs because of a large decrease

in reliability (shown in Figure 5). This is due to the fact that the

latency is only computed for sensors that receive a broadcast.

So, the few sensors that happen to receive the broadcast will

do so with a small latency when p is high and q = 0. As an

example, when p = 0.3, the reliability of the broadcast is about

80%. However, the slight decrease in latency when p = 0.7
comes at the expense of achieving only a 20% reliability. The

q = 0, r = 1 case actually shows an increase in latency

because the second packet being transmitted is what is usually

being received. The second transmission occurs only after the

first transmission that uses a short preamble.

Figure 6 shows, as expected, that if q = 1 or r = 1, the

reliability is 100%. However, if both q and r are zero, then

the reliability steadily decreases with p to the point of almost

0% reliability.

The overhead for receiving and sending in the protocols can

be seen in Figure 7 and Figure 8, respectively. As expected,

when r = 1, we get twice the overhead for both sending

and receiving when compared to r = 0. In both figures, we
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see that the overhead increases as p increases when r = 1
since more packets are sent according to the p parameters and,

hence, more packets are sent a second time according to the r

parameter. In the case where q = 0 and r = 0 in these figures,

we see a decrease in overhead since more packets are being

transmitted according to the p parameter and less neighbors

are listening at that time (since q = 0).

Consistent with our simulation results in [1], Figure 9

shows that an increase in q causes a linear increase in energy

consumption. The p = 1 case uses significantly less energy

than the other three cases at lower values of q. This is due

to a decreased reliability compared with the other three cases.

When no packets are being transmitted using the power save

protocol, sensors sleep more since they are receiving fewer

packets. This is similar to what was seen in Figure 4.

Figure 10 shows the effect of q on latency. In the p = 1,

r = 1 case, the latency shows a linear decrease with q. This is

because when q = 0, most of the broadcasts received are from

the second transmission. However, when q = 1, the broadcasts

received are from the first transmission instead of the second

rebroadcast (as determined by the r parameter). In the p = 1,

r = 0 case, when q = 0 the latency is low due to the low

reliability (as shown in Figure 11). After this point, however,

there is a gradual decrease in latency as more broadcasts are
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Fig. 7. Reception overhead.
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Fig. 8. Transmission overhead.

received directly from the source rather than rebroadcasts by a

neighbor. When p = 0.3 and q = 0, we can see that r = 1 can

actually have a negative effect when compared with r = 0 due

to the increased contention from the extra overhead induced.

The fraction of broadcasts that are received is shown in

Figure 11. The interesting cases are only p = 1, r = 0 and p =
0.3, r = 0 since the other two curves have enough redundancy

to give 100% reception. In both cases we can see how the

reliability improves at q increases (the other two curves are

flat at 100% regardless of q’s value).

Finally, we tested the effects of r in our implementation.

Figure 12 shows energy consumption. When p = 1, q = 0,

we can see that the nodes use more energy due to the increase

in reliability that the increasing r is providing. The reliability

improvement with r is illustrated in Figure 13.

Figure 14 and Figure 15 show the overhead for receptions

and transmissions, respectively. These results show that the

overhead doubles when p = 1 and q = 1 as r goes from 0 to

1. This occurs because when p = 1, each sensor will transmit

each broadcast once when r = 0 and twice when r = 1. When

p = 0, we see no effects on the overhead, with respect to r,

as expected. When p = 1 and q = 0, then the overhead is

zero when r = 0 due to the lack of reliability. The increasing

reliability with r causes the overhead to increase linearly.
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Fig. 10. Average broadcast latency.

From these results, we see that our implementation in

TinyOS shows the same trends as we observed in simulation

for energy consumption, latency, and reliability as a function

of the p and q parameters. Additionally, we have shown the

effects of a new parameter, r, which can improve reliability

at the expense of extra packet overhead. Our figures show the

quantitative performance of these three parameters on sensor

hardware.

VII. LESSONS LEARNED

In this section, we list some lessons that we learned as a

result of our implementation.

Lesson 1: A small fraction of seemingly trivial tasks will take

a large fraction of your time.

Getting a reliable serial connection between a Mote

and the laptop proved extremely time consuming. The

need for root access limited our PC choices to laptops.

Most laptops are equipped with only USB ports and not

serial ports. However, the USB-to-serial adapters that we

tried tended to produce non-deterministic errors where

serial communication would succeed about 10-20% of the

time. After devoting significant time working under the

assumption that the operating system needed configured

correctly, we eventually had to purchase a laptop with a

native serial port.
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Fig. 11. Reliability of broadcast (all curves overlap except for (q = 0, r =
0).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1

F
ra

c
ti
o
n
 o

f 
T

im
e
 S

p
e
n
t 

N
o
t 

S
le

e
p

in
g p = 0, q = 0

p = 0, q = 1
p = 1, q = 0
p = 1, q = 1

r

Fig. 12. Energy consumption.

Similarly, some aspects of TinyOS code are poorly

documented and commented (though, overall, the docu-

mentation is good relative to other open source projects).

Thus, some questions that could be answered quickly by

someone familiar with the system took a much longer

time to figure out by perusing code, documentation, and

running applications. Examples include finding that link

layer retransmissions were not implemented and discov-

ering how to code them correctly. Another example is

determining the differences among the routing protocols

provided in TinyOS and discovering how to use these

components correctly.

Lesson 2: Multihop topologies are much more difficult to

create than in simulation.

We found this particularly difficult in an indoor setting.

Contrary to our assumption that one could just place

devices in a large seminar room spaced by a fixed

distance, we discovered that this task requires much more

in the way of measurement studies in a specific location

to create a topology. Factors such as the height of a

device, its distance to other objects, and asymmetry of

communication links proved extremely complex in our

chosen environment. A much more rigorous measurement
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Fig. 14. Reception overhead.

study of a location or, better, a specifically designed

testing area are needed to create multihop topologies.

Lesson 3: Statistic collection and software updates are ex-

tremely difficult without a wired backplane.

A significant amount of effort was needed to create

a system for collecting statistics that did not interfere

with experimental runs. Without an out-of-band channel

available, each node had to unicast its statistics for a run

back to the sink using the same channel on which the

experiments were run.

This was exacerbated by the fact that the experiments

required power save protocols to be used, which de-

creased reliability and increased latency for packets. Our

solution was to use local timers with a large “fudge”

factor to account for synchronization errors so that all

nodes would report their statistics at about the same

time and could turn power save mode off while this was

being done. Thus, one node’s statistics collection was not

interfered with by another node’s statistics reporting.

Another major difficulty with the lack of a wired

backplane is that every time a change is made to the code,

each sensor must be manually connected to the laptop and

receive the uploaded code. This approach is obviously

neither scalable nor desirable during the debugging phase.
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Lesson 4: Debugging is difficult.

Essentially, the only output available is three LEDs. No

gdb or printf statements can be used when things

do not go as planned. The simulator that is available

with TinyOS is of some use, but some lower level

hardware abstractions are not available (e.g., the time-

stamping mechanism) or significantly differ from the

Mica2 implementation (e.g., the channel bitrate in the

simulator is hard-coded to be twice that of the Mica2

hardware). Again, debugging is an area that would greatly

benefit from a wired backplane. Though, even this is

made difficult by the fact that every module that needs

debugged must be wired to the backplane component and

it must create a new packet type to communicate its data.

Lesson 5: Buffer management is difficult.

In TinyOS, when an upper layer sends a packet to a

lower layer, it is responsible for protecting the memory

allocated to that packet until lower layers signal that they

are finished handling it. Lower layers are responsible for

sending back pointers to packet memory locations when

they signal that they are finished. Coding must be done

carefully to ensure that upper layers never reuse memory

being handled by lower layers and that lower layers return

memory pointers consistent with what upper layers are

expecting.2

VIII. CONCLUSION

In our previous work [1], we proposed a lightweight proto-

col, PBBF, that allows lower latency broadcast propagation in

power save networks in a energy efficient manner. Using this

protocol, a user has more fine-grained control over the energy

consumption for a broadcast to achieve a desired latency and

reliability.

2For example, an upper layer has two packet queues from which it is
sending. The pointers to the packets at the heads of these queues are q1

and q2, respectively. Thus, if an upper layer sends the packet at pointer q1,
it would expect that the corresponding signal to indicate that the send is
done will return pointer q1 so that it knows which queue just finished being
serviced. If a lower layer erroneously returns a different pointer, the upper
layer cannot correlate which queue is being signaled as serviced.

In this work, we have proposed a PBBF extension for

improved reliability at the cost of increased packet overhead.

Additionally, we designed and implemented a PBBF architec-

ture in TinyOS [2]. Our evaluations show the energy consump-

tion, latency, reliability, and overhead tradeoffs possible using

PBBF on Mica2 [9] hardware.
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APPENDIX I

PBBF INTERFACES AND PACKET FORMATS IN TINYOS

A. Packet Formats

1) SimplePbbfMsg:

typedef struct SimplePbbfMsg {

// Source can be either the broadcast

// source or a predefined UART address

uint16_t source;

// A broadcast sequence number that is

// unique per source

uint8_t seqno;

// How many hops the packet has traveled

// from the broadcast source

uint8_t hopCount;

// The p value that the node should use

uint8_t pVal;

// The q value that the node should use

uint8_t qVal;

// The r value that the node should use

uint8_t rVal;

// Sequence number of the test run for

// this packet

uint8_t runSeqno;

// Timestamp for stats

// (granularity = 1/921.6 kHz)

uint32_t latency;

} __attribute__ ((packed)) SimplePbbfMsg;

// packed attribute removes field padding



// on Mica2 architecture

2) PbbfStatsMsg:

typedef struct PbbfStatsMsg {

// Source ID of the node reporting the

// stats

uint16_t nodeId;

// Total amount of data packets sent by

// SimplePbbfBcast

uint16_t totalDataSent;

// Total amount of data packets resent

// according to the r parameter

uint16_t totalDataResent;

// Total data packets received by

// SimplePbbfBcast (includes duplicates)

uint16_t totalDataRecv;

// Total application level packets

// received (duplicates suppressed)

uint16_t totalAppRecv;

// Average end-to-end latency from

// broadcast source to this node

uint32_t avgLat;

// Fraction of time the node’s radio

// was not sleeping 0=0%, 255=100%,

// uniform spacing between

uint8_t fracOnTime;

// Sequence number of the test run for

// which stats are being reported

uint8_t runSeqno;

} __attribute__ ((packed)) PbbfStatsMsg;

// packed attribute removes field padding

// on Mica2 architecture

3) UARTMsg: UARTMsg can be of type either Sim-

plePbbfMsg or PbbfStatsMsg.

B. Interfaces

1) PBBF Interface:

interface PbbfControl {

// Each parameter can be set to one of

// 11 discrete values corresponding to

// probability values between 0.0 and

// 1.0 spaced uniformly.

command void setPLevel(uint8_t);

command void setQLevel(uint8_t);

command void setRLevel(uint8_t);

}

interface PbbfNotifier {

// Signals PBBF module when a sleep

// decision needs made

event result_t sleepDecisionPoint();

// PBBF tells the signaling module

// whether or not to sleep

command void setSleep(bool);

}

2) Broadcast Send Interface:

interface BcastSender {

// Used by the application to send

// a broadcast packet

command result_t send(TOS_MsgPtr);

event result_t sendDone(TOS_MsgPtr,

result_t);

}

3) Stats Handling Interface:

interface PktStats {

// A packet was sent, bool tells

// whether it was a control packet

command void SentPkt(bool);

// A packet was received, bool tells

// whether it was a control packet

command void RecvdPkt(bool);

// Collect the stats from the received

// packet. uint32_t is the latency of

// the packet since it was sent by the

// source.

command void HandleRecvdStats(

TOS_MsgPtr, uint32_t);

// Signal that the stats have been

// handled

event result_t HandleRecvdStatsDone(

TOS_MsgPtr);

}

interface RadioPktStats {

// Signal to the stats module when the

// radio switches on and off

event result_t radioPoweredOn();

event result_t radioPoweredOff();

}

interface ReportStats {

// Used by the stats collection module

// to transmit collected stats back

// to the sink.

command result_t ReportStats();

event result_t ReportStatsDone(

result_t);

}

interface PbbfStats {

// Signal to the stats module when PBBF

// sends a packet twice according to

// the r parameter.

event result_t didSecondSend(

TOS_MsgPtr);

}

4) Control Packet Handling Interface:

interface NetworkInit {

// Signals a component when a control

// packet has been received to

// initialize the current test run

// for an application. The input

// parameters gives a unique sequence

// number to identify the test run.

event result_t isInitialized(uint8_t);

}

interface PktHandler {

// When a control packet is received,

// pass to the control packet

// handling module.

command result_t handle(TOS_MsgPtr);

event result_t done(

TOS_MsgPtr, result_t);

}


