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Abstract— Designing energy efficient protocols for ad hoc
networks is important since there has been little improvement in
the amount of energy stored on these devices. Previous work [1]–
[4] considers leaving a subset of nodes in a state with high
energy consumption and low latency while the rest of the network
remains in a power save state (i.e., low energy consumption and
high latency). Our work is the first to generalize this concept
for ad hoc networks by proposing the use of k levels of power
save, each of which presents a different energy-latency tradeoff
(i.e., a lower latency state requires more energy consumption).
Thus, previous work only considered the case where k = 1 or
k = 2. In this paper, we propose a link layer protocol to provide
k levels of power save and a routing protocol to use this link
layer effectively. Via simulation, we show that our protocols are
able to maintain a desired end-to-end latency with a relatively
low energy consumption.

I. INTRODUCTION

Reducing energy consumption is important for wireless

devices since they may need to operate for long periods on

battery power. Unfortunately, the energy density of batteries

has shown little improvement recently when compared to

other performance metrics [5] (e.g., memory, disk storage,

computation speed, and channel bitrate). This trend is further

exacerbated as devices become smaller since there is less

physical area available for a battery. Thus, given that the

amount of energy stored is increasing rather slowly, it is

beneficial to consider how to reduce the rate at which energy

is consumed. This necessitates the need for energy-efficient

protocols to balance how much energy the hardware consumes

with acceptable performance for applications.

A complete solution to energy efficiency involves many ar-

eas of research, such as hardware, operating systems, network-

ing, and applications [6]. Our work focuses on the networking

component since it has been shown to be a significant power

sink in devices with small or no displays [7] (e.g., sensors,

cell phones).

Most work in this realm has been fairly restricted to

homogeneous protocols in the sense that all nodes in a network

use the same power save protocol (e.g., power save is either
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TABLE I

ENERGY CONSUMPTION AND LATENCY OF BIMODAL POWER SAVE STATES.

State Energy Consumption Latency

Power Save Low High

No Power Save (Always On) High Low

turned on or off for all nodes). Generally, turning power save

on will consume less energy, but degrade the latency and

throughput in the network when compared to switching it off.

However, some work considers the scenario where a small

subset of nodes turns power save off while the rest of the

nodes remain in the power save on state [1]–[4]. How this

subset of nodes is chosen differentiates these protocols and is

discussed in Section II.

One common characteristic of all such ad hoc network

power save protocols is that they are bimodal. That is all nodes

are in one of the two states shown in Table I. The contribution

of this work is to generalize the idea of heterogeneous power

save protocols to support multiple power save states. In our

work, each node uses one of k levels of power save at

any given time (thus, previous work only focused on the

k = 1 and k = 2 cases). While the idea of multilevel

power save has been proposed for single hop networks with

a base station [8], we are unaware of any comparable work

for ad hoc networks. Obviously, these scenarios differ greatly

since the latter requires distributed protocols as opposed to the

centralized approach of the former. Additionally, the approach

in [8] uses a separate out-of-band channel whereas our work

only requires one channel.

In Section II, we survey related work. In Section III we

describe our design in two parts: the link layer protocol

(Section III-A) provides multilevel power save and the routing

protocol (Section III-B) uses this link layer effectively. We

evaluate our protocol via simulation in Section IV. Section V

proposes some extensions to our scheme and Section VI

concludes the paper.
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Fig. 1. IEEE 802.11 Power Save Mode (PSM) [9].

II. RELATED WORK

We begin by describing IEEE 802.11 Power Save Mode

(PSM) [9]. This protocol serves as the foundation for our

protocol and much of the related work. It has a simple design

and the most complete specification of any open standard

power save protocol. Nodes are assumed to be synchronized

and awake at the beginning of each beacon interval (BI).

After waking up, each node stays on for a period of time

called the Ad hoc Traffic Indication Message (ATIM) window.

During the ATIM window, since all nodes are guaranteed to

be listening, packets that have been queued since the previous

beacon interval are advertised via ATIM packets. When a node

has a packet to advertise, it sends an ATIM packet to the

intended receiver during the ATIM window. In response to

receiving an ATIM packet, the destination will respond with

an ATIM-ACK packet (unless the ATIM specified a broadcast

destination address). When this ATIM handshake has occurred,

both nodes will remain on after the ATIM window and try

to send their advertised data packets before the next beacon

interval. If a node remains on after the ATIM window, it must

keep its radio on until the next beacon interval. If a node does

not send or receive an ATIM, it will enter sleep mode at the

end of the ATIM window until the next beacon interval. This

process is illustrated in Figure 1. The dotted arrows indicate

events that cause other events to occur. Node A sends a data

packet to B, while C, not receiving any ATIM packets, returns

to sleep for the rest of the beacon interval.

The protocol in [1] works with on-demand routing and

uses 802.11’s PSM when a node is not engaged in sending,

receiving, or forwarding data. When a node is communicating,

soft-timers are used to transition the node to an idle listening

mode that reduces latency and preserves throughput better

than using only 802.11’s power save. However, the timers

do not adjust to the traffic rate, so if traffic is not frequent

enough to refresh the timers, then the benefits of the protocol

are lost. TITAN [2] extends the work from [1]. In TITAN,

route requests are delayed by sleeping nodes to allow the

route discovery procedure to favor nodes that are already in

the idle listening state. This helps reduce the overall energy

consumption in the network. Both of these protocols only

consider two power save levels whereas our work is designed

for the more general scenario of k power save levels.

Another strategy is for nodes to remain awake based on

their local topology and/or traffic [3], [4]. GAF [4] assumes

the nodes have some location information and form virtual

grids. The size of the grids is chosen such that the nodes in

two adjacent grids are equivalent with respect to forwarding

packets. Then, within each grid, a discovery protocol tries

to ensure that most of the time one node remains active

while the rest enter a low-power state. As mobility increases,

the discovery process should be more frequent. SPAN [3]

allows all nodes to enter power save mode except for elected

coordinators. At the MAC layer, nodes periodically exchange

messages that contain its set of neighbors, coordinators, and

whether it is a coordinator. Nodes will then elect themselves

coordinators if their neighbors would get better connectivity by

it doing so. A random delay is introduced before nodes declare

themselves coordinators. This delay varies inversely with the

amount of connectivity that would be achieved and inversely

with the amount of energy remaining at the node. For fairness,

the coordinators will periodically withdraw. These protocols

only consider two power save levels.

As we mentioned in Section I, all of the work mentioned

above only places the nodes in one of two power save states.

By contrast, our work places nodes in one of k power save

states. In [8], a similar idea is explored in the context of

single hop networks with a base station. Here, devices have a

paging interface that is used by the base station to wake up

certain nodes when it has data to send. The devices can be

in any one of several sleep states. Each sleep state uses less

power in steady state, but requires more delay and power when

transitioning to the fully awake state. A device will remain in

a power save state at least long enough to get a positive energy

gain before transitioning to the next lower power state. The

base station tracks this cycle for each device and when it has

data to send, it waits as long as possible before waking the

device and transmitting subject to QoS requirements. When

the base station wishes to wake a device up, it pages all

devices in that current sleep state. The non-target devices in

the paged sleep state will then start the sleep cycle again once

they determine that the data is not for them. This allows the

size of the paging message to be on the order of the number

of sleep states instead of the number of nodes.

III. PROTOCOL DESIGN

Our goal is to design a routing protocol for networks that

use k levels of power save protocols. Each level of power

save provides a different energy-latency tradeoff (i.e., a level

with a lower latency requires more energy). As mentioned

earlier, this paradigm is a generalization of the paradigm

in [1]–[4] (discussed in Section II) where only two levels of



power save are assumed (the levels shown in Table I). By

using multiple power save levels, we allow applications (e.g.,

sensor reports) to achieve an acceptable latency while reducing

energy consumption in the network.

The idea of using multilevel design to achieve acceptable

tradeoffs is prevalent in computer science (see [10] and

references therein). For example, in computer architecture,

accessing cache is much faster than main memory. However,

main memory is cheaper in terms of cost per byte and is

capable of storing much more data.

A. Link Layer Protocol

First, we need to specify how the link layer power save

protocols can be designed to provide k levels of power save,

each with different energy-latency characteristics. Many power

save protocols can be adapted to achieve this as discussed

later in this section. We use 802.11 PSM [9] as the underlying

power save protocol, which is described in detail in Section II.

The 802.11 PSM protocol can be adapted to provide k levels

of power save by changing how frequently a node wakes

up to listen during an ATIM window based on its current

power save level. We denote these k power save levels as

PS0, . . . , PSk−1. Without loss of generality, we assume that

PS0 corresponds to the “always on” state and PSk−1 uses the

least amount of energy, but has the highest latency. In PS0,

the nodes never sleep and, thus, can receive a packet with

the lowest latency, but also consume the most energy. The

next level, PS1 corresponds to the standard implementation of

802.11 PSM. That is, when a node is not sending or receiving

any packets, it wakes up for every ATIM window and sleeps

for the remainder of the beacon interval. In PS2, nodes wake

up only every other ATIM window. This allows them to save

about twice as much energy as the nodes in level PS1 while

also doubling the latency to send or receive a packet.

Because we want to ensure that every node has their ATIM

overlap with every other node periodically, we increase the

sleep time for each level by a factor of two. This is a

simple method to guarantee overlap, but more complicated

schedules [11] may work as well. Thus, to calculate the beacon

interval for level PSi, we have:

BIi = 2i−1 × BIbase , when i > 0 (1)

where BIi is the beacon interval for the i-th power save level

and BIbase is the base beacon interval specified for the system

(i.e., BI1 = BIbase).

Figure 2 illustrates the multilevel link layer protocol with

k = 4. In this figure, AW corresponds to the ATIM window

size and we show only the case in which no traffic is being

sent. The beacon intervals of the four power save levels are:

BI0 = 0, BI1 = t1 − t0, BI2 = t2 − t0, and BI3 = t4 − t0.

The base interval is t1 (i.e., BIbase = t1).

The largest possible beacon interval, BIk−1, serves as the

reference point for all of the nodes to ensure that they remain

in phase. That is, the first ATIM window for which a node

awakes in a cycle must always occur at the beginning of a

reference point beacon interval (that is spaced BIk−1 time

units after the previous reference point). The reference points

in Figure 2 are at t0 and t4.

Since we assume that the nodes are synchronized, each node

is initialized with the time of the previous reference point.

Alternatively, if a node is added to the network later, it can

learn the time of the previous reference point from older nodes

in the network, along with the ATIM window size, BIbase, and

the number of power levels the network is using via 802.11

management frames. This guarantees that for any two nodes,

one with PSi and the other with power level PSj where i < j,

the node with PSi will be awake during every ATIM interval

that the node with PSj is awake since BIj is divisible by

BIi.

Each node keeps track of its neighbors’ power save state

as follows. On every data and ACK packet a node sends,

it attaches its current power save level. We do not test

the consistency of a node’s power save table. However, our

protocol could use a scheme similar to the one in [1] whereby

the first time a packet transmission fails, a node sets the

intended receiver’s power save state to PSk−1. Recall that

PSk−1 has the longest beacon interval and all nodes, no matter

what power state, are guaranteed to wake up every BIk−1

time units. Thus, if the neighbor still exists near the node,

communication should be possible during this beacon interval.

If a transmission fails again for the receiver using PSk−1, then

the link is considered dead and reported to upper layers.

This is just one example of how a power save protocol can

be modified to achieve multiple levels with different energy-

latency tradeoffs. Other examples include adjusting the time

between listening periods in protocols such as STEM [12] and

WiseMAC [13]. Nodes using a longer sleeping time between

listening periods would save more energy, but require a longer

latency to be awakened by neighbors.

B. Routing Protocol Description

In Section III-A, we described how to provide multilevel

power save. In this section, we describe a routing protocol to

efficiently use multilevel power save. If energy consumption

is the only concern, the optimal adaptive sleeping strategy is

simply for every node to select PSk−1 as their power save

state. However, this results in large delays due to the power

save protocol that may be unacceptable for many applications.

Thus, our protocol works by taking an application-defined

latency bound and trying to find a route to achieve the

bound while attempting to minimize the increase in energy

consumption. We focus on only the latency induced by the

power save protocol because this delay tends to be large (e.g.,

hundreds of milliseconds or even seconds per hop) relative to

contention and queuing delay in non-congested networks. In

highly congested networks, power save protocols would most

likely not be used. A vast body of QoS research deals with

congestion and queuing delay which we view as orthogonal

and complementary to our work.

If we are given a set of m flows to route (F1, F2, . . . , Fm)

and a desired latency for each flow (L1, L2, . . . , Lm), finding

routes that minimize the overall energy consumption increase
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Fig. 2. Multilevel power save with 802.11 PSM [9].

for the flows is NP-complete. A proof of this is presented in

Appendix I. In this work, therefore, we consider heuristics to

address the problem.

We modify DSR (Dynamic Source Routing) [14] to obtain

our routing protocol. We now give a brief overview of the

salient aspects of DSR. When a source, S, wants to send

packets to a destination, D, it must first discover a route. To

do this, S broadcasts a route request packet (RREQ) that

is flooded throughout the network specifying that it is trying

to find a route to D. Each node, other than D, that receives

S’s RREQ will add itself to a node list in the packet and

rebroadcast the RREQ (assuming that the TTL of the RREQ

has not expired).1 Each RREQ is rebroadcast only once by an

intermediate node. So, if multiple copies of the same RREQ

are received by a node, as determined by a unique sequence

number for the request, the node will forward only the first

one that it receives. If the RREQ reaches D, it generates a

route reply (RREP ) packet and sends it to the source.2 The

RREP packet is generated by reversing the node list in the

RREQ and sending the RREP along the path specified by

the node list. The entire node list is included in the payload

of the RREP packet and is also used for source routing the

packet to S. A node that receives a source-routed packet will

only forward it if the node’s ID is next on this node list. To

do so, it transmits the packet to the next node ID specified

on the list. In this manner, the RREP makes its way back

to S. At this point, S extracts the node list from the payload

of the RREP and uses it as the source route to forward data

packets. That is, every data packet that S sends will have the

node list appended to the routing header.

We modify DSR as follows. The RREQ sender adds its

desired latency, L, for the flow to the RREQ packet. When

forwarding the RREQ, each node will append its current

power save state in addition to its node ID. When D receives

1Non-destination nodes replying to RREQs using cached routes is one
of many extensions that has been proposed for DSR. We do not use cached
replies in our work.

2Another option in DSR is whether the destination replies to every RREQ
it receives or just the first one. In our protocol, the RREP procedure is
modified, but the destination will send only one RREP per RREQ.

its first RREQ from S, it will set a timer for some specified

time, Tdelay .3 D will not send a RREP until this timer

expires. While the timer is running, D will collect all RREQs

with the same sequence number that it receives from S. At the

end of this Tdelay time, D will evaluate all the paths that it

has received from these RREQs and send an RREP along

the “best” path. Next, we specify the routing metrics that are

used to determine which path to use.

The goal of our routing metric is to find the path that can

achieve the desired latency, L, (specified in the RREQ) while

increasing the energy consumption in the network the least. To

do this, we consider paths that have been collected during the

RREQ reception phase. For each path, we find the node on

the path whose energy consumption will increase the least by

moving to the next higher energy state (and, hence, lowering

the latency for that hop). We continue iterating in this manner

until the path’s end-to-end power save-induced latency is less

than L or all nodes are in the highest energy state. At this

point, we store the total energy increase for the path that was

necessary for the iteration to terminate. Once this has been

done for all the paths, we send the RREP on the path that

requires the smallest total energy consumption increase. If two

or more paths are tied for the minimum cost, then our protocol

prefers routes with the lowest hop count.4 Our algorithm is

shown in Figures 3, 4, and 5.

Each node receiving the RREP will check the requested

power save level set for it by the destination. If the requested

power save level is a higher energy level than its current

level, then the node switches to the new power save level.

Otherwise, it will remain in its current power save state since

it is sufficient to maintain the desired latency of the path.

3Another option is that a node replies after receiving some number, say x,
RREQs even if the Tdelay timer has not yet expired. For example, if x = 1,
then a node would just calculate the power save state changes required for
the path on the first RREQ that it receives and use that path (and disregard
all subsequent RREQs for that route discovery). If x = 2, the node would
consider only the first two RREQs that it receives and cancel the Tdelay

timer if it has not yet expired.
4We note that other metrics such expected number of transmissions or

packet loss [15] could be used instead.



FIND-ROUTE(R, L)
1 /*****
2 * Find route on which to send the RREP
3 * given a list, R, of received RREQs
4 * and latency threshold, L
5 *****/
6
7 isF irst← true
8 for each r in R
9 do cost← ENERGY-INCREASE(r, L)

10 if isF irst or cost < min
11 then min = cost
12 minRREQ = r
13 isF irst← false
14
15 /* Set requested power levels for chosen path */
16 ARRAY-COPY(psLevels[minRREQ],
17 newPsLevels[minRREQ])
18
19 /* Reply using the path from minRREQ */
20 SEND-RREP(minRREQ)

Fig. 3. Algorithm for determining which path to use from collected RREQs.

The FIND-ROUTE function in Figure 3 finds the route to

use based on R, the set of RREQs that have been collected.

For each RREQ, FIND-ROUTE calls ENERGY-INCREASE

(discussed below) to calculate the cost of using the RREQ’s

route in terms of how much the energy consumption of the

path must be increased to reach the latency threshold, L. At the

end of the for loop, the least costly path is found and the power

save states are set to the new power levels necessary to achieve

the latency threshold (newPsLevels is a global variable set

in ENERGY-INCREASE). With these updated power levels, the

RREP is constructed and sent along the chosen path via the

call to SEND-RREP.

The ENERGY-INCREASE function in Figure 4 computes

the minimum increase in energy consumption necessary for

the path in a RREQ, r, to achieve the desired latency, L.

First, the function makes a copy of the power save levels

of the nodes in r’s path (psLevels[r]) since our algorithm

needs to change this state. The energyCost variable keeps a

running total of the increase in energy consumption required

for r’s path to reach L. The while loop on line 22 will

continue until the latency of the path is less than L (we

assume that this will always terminate in the pseudocode).

Each iteration of the while loop will calculate the difference

in energy consumption that would result for each node in r’s

path if its current power save state was moved to the next

lower latency power save state (i.e., moving from PSi to

PSi−1). This calculation is done via the call to ENERGY-

DIFF, which is discussed below. Once the for loop on line

24 has terminated, we have identified the node on r’s path

who can transition to a lower latency power save state with

the smallest increase in energy consumption. At this point,

we transition to the lower latency power save state (using the

newPsLevels variable) and increment energyCost by the

energy consumption increase required. When the path latency

ENERGY-INCREASE(r, L)
1 /*****
2 * Find the minimum energy consumption increase
3 * required for the path in a RREP , r, to achieve
4 * a wake-up latency less than or equal to L.
5 *****/
6
7 /*****
8 * psLevels[r] contains the current power save level
9 * of each node along the path in r.

10 * psLevels[r] is an array with an element for
11 * each node on the path.
12 *****/
13
14 /* pathLen[r] is the length of the path in r */
15
16 ARRAY-COPY(newPsLevels[r], psLevels[r])
17 energyCost← 0
18 /*****
19 * We assume that PATH-LATENCY ≤ L
20 * when newPsLevels[r][i] = 0 for all i on the path
21 *****/
22 while PATH-LATENCY(r) > L
23 do isF irst← true
24 for i← 1 to pathLen[r]
25 do cost← ENERGY-DIFF(newPsLevels[r][i],
26 (newPsLevels[r][i]− 1))
27 if cost 6= 0 and (isF irst or cost < min)
28 then min = cost
29 minIndex = i
30 isF irst← false
31 energyCost← energyCost + min
32 newPsLevels[r][minIndex]←
33 newPsLevels[r][minIndex]− 1
34 return energyCost

Fig. 4. Algorithm for computing cost of a path to reach latency threshold
L.

(calculated by the PATH-LATENCY function call) is less than

L, the while loop terminates and returns energyCost.

The PATH-LATENCY function in Figure 4 (line 22) can be

computed in terms of worst-case latency, average-case latency,

or some other metric. We assume that a node j is using the

kj-th power level. Thus, PSkj
denotes its power save level

and BIkj
is the length of its beacon interval. Thus, for a path

of n nodes, and the worst-case latency metric, our protocol

considers the route for use if:

BIk1
+ BIk2

+ · · · + BIkn
< L (2)

The ENERGY-DIFF function in Figure 5 computes an energy

cost for transitioning from one power save state to a lower

latency power save state. We compute the energy consumption

of a power save state as the ATIM window size (atimSize,

whose value is set elsewhere) divided by the power save state’s

beacon interval size (i.e., BIi). The beaconIntervalSize

variable is an array indexed by the beacon interval sizes for

each power save state. Note that this energy consumption

calculation considers only the energy consumption when nodes

are not awake after the ATIM window. When nodes are awake

following the ATIM window, the energy consumption used in



ENERGY-DIFF(oldLevel, newLevel)
1 /*****
2 * Find the difference in energy consumption for
3 * switching from the lower energy oldLevel
4 * to the higher energy newLevel
5 *****/
6
7 /*****
8 * atimSize is a parameter specified elsewhere.
9 * It is the size of the ATIM window in units of time.

10 *****/
11
12 if oldLevel = 0 or newLevel > oldLevel
13 then return 0
14
15 oldEnergy ← atimSize

beaconIntervalSize[oldLevel]

16 if newLevel > 0
17 then newEnergy ← atimSize

beaconIntervalSize[newLevel]

18 else newEnergy ← 1
19 return (newEnergy − oldEnergy)

Fig. 5. Algorithm for computing the energy consumption difference between
two power save levels.

the subsequent beacon interval is the same regardless of the

power save state. As an example, let atimSize = 20 ms, and

BIi = 200 ms and BIi−1 = 100 ms. In this case, ENERGY-

DIFF(PSi, PSi−1) will return 20

100
− 20

200
= 0.1.

Though we do not test this in our simulations, each node

must set a soft timer for each flow for which it forwards pack-

ets so that it can revert to lower energy states whenever that

flow ceases or the route fails. Because the inter-arrival time

for the packets on a flow is highly application dependent, we

propose letting the application specify this timeout value and

piggybacking it on data packets sent by the flow. Whenever a

flow times out or explicitly indicates that it will no longer use

the route, the node transitions into the lowest energy power

save state that is still acceptable to the flows which continue

to use that node on their route, as indicated by the power save

levels specified for the node in RREPs that it has received.

C. Design Discussion

1) Wake-Up Schedules: As described in Section III-A, we

use a simple link layer protocol to provide multiple levels of

power save. Basically, the beacon interval either increases by

a factor of two or decreases by half depending on whether the

node is moving to a lower or higher energy state, respectively.

An alternative is to use more complex wake-up schemes that

provide overlap either deterministically or probabilistically.

In general, probabilistic protocols (e.g., [16]) are not appro-

priate in our design since they essentially add more uncertainty

to an already unreliable channel. Additionally, these protocols

make even soft real-time constraints more difficult to obtain.

Thus, we do not consider probabilistic approaches for our

protocol.

By contrast, protocols that give deterministic overlap in

an asynchronous manner (e.g., [11]) do allow soft real-time

latency bounds. The basic idea is that each node wakes up

according to some pattern that is guaranteed to overlap within

some bound with every other node even though they may

be unsynchronized. The major advantage of this approach is

that it makes synchronization less necessary. However, it can

greatly increase the protocol complexity since the wake-up

schedules have to be chosen appropriately and nodes still must

probe to find out when the overlap occurs since they have no

prior knowledge. Additionally, broadcast is a problem since

there is no single time where a node is guaranteed to have

all of its neighbors listening. We do not use a deterministic

asynchronous protocol because we are not concerned with

synchronization and we need a relatively reliable and low

overhead broadcast mechanism for the route discovery in our

work. This also frees us from the added complexity such a

scheme would add to focus on the major idea of routing with

multiple power save levels.

Another option is to have one, long “master” beacon

interval in which everyone is awake (i.e., PSk−1 in our

protocol). Then, each node chooses its own beacon interval

independently based on the RREPs it receives and lets each

communicating neighbor know the next time it is scheduled

to awake. Nodes then keep track of the next wake-up time

for each node with which they are communicating. This frees

the nodes from the need to use specified discrete intervals and

allows them to use any interval up to PSk−1. Broadcast is

still possible, as in our scheme, where broadcasts are sent only

during the “master”, or PSk−1, interval. The disadvantage of

this approach is that it requires the nodes to keep more per

flow state. Also, it is more susceptible to nodes returning to

sleep too early since nodes waking up experience contention

from data packets, not just ATIM packets as in our scheme.

Data packets tend to be significantly larger than ATIM packets.

In future work, one could more fully explore this idea to

see under what conditions the early sleep problem makes this

protocol worse than our current version.

2) Soft Timers: As mentioned in Section III-B, we use soft

timers per flow passing through a node to determine when

it can revert to a lower energy state. We believe that this

is acceptable since, in many environments, a node will have

only a few flows passing through it. Of course, a node can

always choose not to handle additional flows if its per flow

state becomes excessive.

An alternative to this design decision is to require a sender

to explicitly “delete” a flow by sending a packet along the

path when it is finished. We feel that this method would

be unacceptable in multihop wireless network settings due to

the inherent underlying reliability of the channel and devices.

Because links and flows can fail unexpectedly, a node would

permanently keep state for dead flows for which the flow

was not deleted. Eventually, this could exhaust the node’s

memory resources. Thus, overall, we feel that the per flow

state required to maintains soft timers for this purpose is best

for the environment we are considering.

3) Routing Techniques: We choose to use DSR [14], a

source routing protocol, in our work as described in Sec-

tion III-A. An alternative would be to use a distance vector



approach, like AODV [17]. The disadvantage of using AODV

(or another distance vector protocol) is that nodes learn

only aggregate information about the path during routing as

opposed to DSR which provides per node information. In

the algorithms discussed in Section III-A, we need per node

information. In this aspect, DSR provides a superset of the

information that AODV does. Because our algorithms do not

work with the information from AODV, we use DSR in our

work.

Another choice would be to use link state routing [18],

such as OLSR [19]. Nodes could flood the network whenever

their power save level changes or a link breaks. The obvious

disadvantage of this approach is the high overhead to flood

the network if power save states are changing relatively

frequently. Also, as shown if Appendix I, even if the entire

topology is accurately known, it is still NP-complete to find the

minimal energy consumption increase required for a desired

latency. Thus, the advantage of knowing the entire topology,

as opposed DSR which learns just a few paths, is not easily

exploited. At the very least, we could find the k shortest

paths [20], given the entire topology, and run the algorithms

from Section III-A on each of these paths. In future work, it

would be interesting to test a link state routing protocol versus

our DSR implementation to determine which performs better

under different metric change frequencies and network sizes.

IV. SIMULATION RESULTS

To evaluate our protocol, we simulated it using ns-2 [21].

We test the following schemes, where the bold text is the name

we use to refer to the scheme and the italicized text indicates

the (Routing, MAC) tuple used:

• Always On [9], [14] (DSR, 802.11): This is the IEEE

802.11 protocol with no power save. It is the default,

unmodified MAC protocol in ns-2. Because nodes never

sleep, ALWAYS ON uses the most energy, but has the

lowest latency.

• 802.11 PSM [9], [14] (DSR, 802.11 PSM): This is the

standard IEEE 802.11 protocol with power save enabled.

802.11 PSM is described in Section II. The beacon

interval for this protocol is set to the longest beacon

interval for a given k value.

• CS-ATIM (DSR, CS-ATIM): This is 802.11 PSM with

our proposed carrier sensing modification described

in [22]. The beacon interval for this protocol is set to

the longest beacon interval for a given k value.

• Multilevel PSM (Multilevel DSR, Multilevel 802.11

PSM): This is our proposed multilevel power save proto-

col described in Section III using 802.11 PSM.

• Multilevel CS-ATIM (Multilevel DSR, Multilevel CS-

ATIM): This is our proposed multilevel power save proto-

col described in Section III using the CS-ATIM protocol

that we proposed in [22].

We use 2 Mbps radios that have a 250 m range. Each data

point is averaged over 30 tests. The ATIM window is 20 ms

and the base beacon interval, BIbase, is 100 ms. Our topologies

are generated by placing 50 nodes uniformly at random in

TABLE II

STANDARD DEVIATION AS PERCENTAGE OF MEAN FOR LATENCY FIGURES

(AVERAGE | MAXIMUM).

Figure 7 Figure 9 Figure 12

Always On 29.06 29.06 25.99 25.99 29.00 29.00

802.11 PSM 33.77 52.54 29.39 29.39 56.94 56.94

Multilevel PSM 20.03 22.75 26.33 29.04 23.46 53.28

Multilevel

CS-ATIM

17.61 19.43 24.86 35.56 22.04 61.39

CS-ATIM 36.06 52.01 26.94 26.94 43.72 43.72

a 1000 m×1000 m area. Each scenario has five flows among

randomly chosen source and destination pairs. Each flow sends

at rate one packet per second using CBR traffic. We set Tdelay ,

the time that a destination waits to collect RREQs to be

500 ms. In our experiments, we set L to be the same value

for all flows in the network and do not test the more general

case where each flow could select its own L value.

Since our protocols are designed to only achieve soft real-

time bounds on latency, it is important to consider the standard

deviation of our latency results. This gives us an indication of

how well the protocols are able to stay within the bounds over

multiple runs. To avoid cluttering our figures with standard

deviation bars, we provide the numerical values in Table II

(we will refer to this table in our discussion of the results).

In this table, we give the standard deviation for each protocol

in each latency figure as a percentage of the mean for the

corresponding data point. We use the percentage since the

mean values can vary significantly which makes the absolute

values of the standard deviations difficult to compare. We

compute the standard deviation averaged over all data points

for the protocol as well as the maximum standard deviation

of any one data point on a protocol’s curve. Additionally, we

have plotted the standard deviation bars for the latency of

the multilevel protocols to show their deviation relative to the

desired latency bound.

Figure 6 shows energy consumption of the protocols when

L = 300 ms. The horizontal axis is k, the maximum number of

power save levels. Since Tbase = 100 ms, k = 2 corresponds

to the traditional 802.11 protocol where a node can either be

on or using a power save protocol with a beacon interval

of 100 ms. From the figure, we see that all the power save

protocols use significantly less energy than the Always On

protocol.

We see that the multilevel PSM protocol uses about 33% to

50% more energy than the traditional PSM protocol. However,

this increase in energy comes with a huge reduction in latency

as shown in Figure 7. In this figure, we measure only the

latency for packets that are sent after the source has received

the RREP . The source queues packets while waiting for the

RREP , which makes their delay rather large and can skew

the average end-to-end delay of the rest of the packets.

The multilevel protocols achieve a delay of around 140 ms

to 180 ms, which is well within the L = 300 ms bound that

was given. By contrast, the non-multilevel protocols have a
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latency of just over 300 ms when k = 2 and increase to

over 3000 ms when k = 5. For k = 3 and k = 4, we

notice that the average latency is approximately double that

of using the next lower latency power save state (i.e., k = 3
latency is about double that of k = 2 and k = 4 is twice

as much as k = 3). However, when k = 5, the latency more

than doubles over that of k = 4. The reason for this is that

ATIM window contention causes significant delays. Since the

ATIM window size is static regardless of k and the traffic rate

remains the same, more packets need to be advertised in the

ATIM window when k = 5 as opposed to, say, k = 2. The

increased contention reaches a point where some nodes are

unable to send an ATIM when they first try and must wait

another beacon interval. This greatly degrades latency since

the beacon intervals are longer for larger values of k. When

k = 5, each hop has a wake-up latency of 800 ms plus the

increased ATIM contention. With the multilevel power save

protocols, the routing protocol adjusts the power save level of

nodes along a path to ensure that the latency is less than L.

Additionally, we can see from Table II that the multilevel

protocols in Figure 7 have a lower deviation in their latency

among different runs than the corresponding protocol without

the multilevel extension. The multilevel protocols have a

deviation of about 20% on average, whereas PSM and CS-
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ATIM without the multilevel extension have about a 35%

deviation on average. This is due to the fact that a wider

range of average latencies are possible in the non-multilevel

protocols for different topologies and traffic patterns.

From Figure 6, we can see that our carrier sense techniques

from [22] integrate nicely with the multilevel power save

scheme. In particular, by using CS-ATIM, we are able to

achieve virtually the same latency at using PSM (and well

below the L threshold) while consuming less energy than the

PSM version of multilevel power save. All of the protocols

seem to plateau at a point where the utility of adding more

power save levels diminishes. The multilevel CS-ATIM pro-

tocol seems to reach this plateau with only two power save

levels and shows only a slight decrease in energy consumption

after this point.

In Figure 8, Figure 9, and Figure 10, we set k = 2 and

show the effects of changing L, the desired latency, on energy

consumption and the observed latency, respectively. Again, we

see that the multilevel power save protocols achieve the latency

bound with only a slight increase in energy. In particular,

we can see that, for k = 2, if a latency of less than about

300 ms is desired, then the power save protocols that do

not use multilevel power save cannot achieve this. Without

multilevel power save, the only option would be to turn off

power save which, as we can see from Figure 8, substantially

increases energy consumption by more than a factor of two.

Furthermore, in Figure 10, we can see that virtually none of

the individual runs exceed the latency bound when using the

multilevel extension. We note that a few of the flows do exceed

the latency bound by a small amount. This occurs because

our protocol adjusts the power save induced latency and does

not account for transmission times and queuing delays. Thus,

our protocol occasionally sets the power save states such that

they are close to or equal to L, but the extra delays make the

observed latency slightly higher than L.

In Figure 11, Figure 12, and Figure 13, we show the effects

of changing L for k = 3. We can see that the multilevel power

save protocols use slightly more energy relative to the other

power save protocols than for the k = 2 case. However, the
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multilevel power save protocols are also much more useful in

achieving the latency bound. In Figure 12, we can see that

an application with L up to about 600 ms cannot achieve its

bound without the use of multilevel power save protocols or

turning off power save all together. The 600 ms is a function of

the average hop count in the network and beacon interval size.

From Figure 9 and Figure 12, we can infer that the average

hop count is approximately three in our scenarios since the

latency with a 100 ms beacon interval is about 300 ms and

with a 200 ms beacon interval is about 600 ms. As with the

k = 2 case, we can see in Figure 13 that virtually none

of the individual runs exceed the latency bound when using

the multilevel extension. As discussed earlier, the bound is

occasionally exceeded since our protocol only accounts for

the power save induced latency whereas the observed value

is also affected by the packet transmission time and queuing

delay.

V. EXTENSIONS

A. Energy Load Balancing

As in previous work [23], it is still a concern that certain

nodes that are chosen to have a high energy power save state

early may end up receiving a disproportionate amount of the

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0  100  200  300  400  500  600  700  800  900 1000

J
o

u
le

s
/B

it

Desired Latency, 3 PS Levels (ms)

Always On
802.11 PSM

Multilevel PSM
Multilevel CS-ATIM

CS-ATIM

Fig. 11. Latency threshold versus energy consumption using three power
save levels.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  100  200  300  400  500  600  700  800  900  1000

P
o
s
t-

R
R

E
P

 L
a
te

n
c
y
 (

m
s
)

Desired Latency, 3 PS Levels (ms)

y=x
Always On

802.11 PSM
Multilevel PSM

Multilevel CS-ATIM
CS-ATIM

Fig. 12. Latency threshold versus observed latency using three power save
levels.

network’s traffic because they have a favorable metric. To

address this, we propose that higher energy nodes periodically

try to “patch” their place on the route with another node with

a power level less than or equal to it that can be reached by

both its upstream and downstream neighbors on the route. A

node could try this procedure when its residual energy falls

below a specified level or when its recent energy consumption

rate exceeds a certain level.

Such a situation may occur when two nodes, say A and B,

are equivalent from a routing perspective and are in the same

power save state when the RREQ is initially broadcast. In this

circumstance, node A may be selected, for example, because

it wins access to the channel before B and rebroadcasts the

RREQ first. Thus, patching would allow A to eventually

switch places with B to balance the energy consumption of

the two nodes.

We note that others [2] propose delaying the RREQ

proportional to remaining energy. However, a node with more

energy at the time of the RREQ may eventually consume

more energy than its neighbors and require load balancing.

Also, such a scheme assumes a homogeneous environment

where all devices have the same initial energy and/or they all

consume energy at the same rate. In practice, this may not be
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true.

To do this, the node desiring the patch, say P , broadcasts a

message that is received by both its upstream and downstream

neighbors (nbrup and nbrdown, respectively) asking them each

to broadcast a packet to test which nodes are neighbors to both

nbrup and nbrdown. This packet also includes P ’s residual

energy. Any node that receives both the packet broadcast by

nbrup and nbrdown and has more residual energy that P is

a candidate to replace P on the path. Such nodes respond to

P and then P can select the node with the highest remaining

residual energy. Standard techniques such as choosing a back-

off interval proportional to a node’s residual energy can be

used to ensure that nodes with a higher residual energy reply

first.

The process of patching a route is shown in Figure 14.

Here, we assume that traffic is being sent along the route A →
B → C and that B wants to try to remove itself from the path.

Thus, B sends out a broadcast indicating that it wants to try to

patch the route between A and C. In turn, A and C broadcast

a packet to help other nodes determine their reachability. In

this example, N1, N2, and N3 cannot take B’s place because

they do not have both A and C as neighbors. The only two

candidates to take B’s place are N4 and N5, since both are

neighbors of both A and C. In order for N5 to take B’s place,

it would be necessary for it to communicate this to B via A

and/or C. This is in contrast to N4, which can communicate

with B directly. This implies that the communication overhead

and complexity for N4 to be used is less than if N5 is used.

In order for N4 or N5 to take B’s place on the route, they

need to have more residual energy than B.

If a node is part of multiple, disjoint routes, it can still try

this patch procedure incrementally by applying it to the path

which requires the highest energy level until an acceptable

level is reached. We note that in this scenario, a node may

also need to account for the rate at which traffic is being

forwarded on a given path since flows which require a lower

energy power save level, say flow, may still cause the node

to consume more energy than a flow that requires a higher

power save level, say fhigh, if the flow is sending at a higher

N1 N2 N3

N4

N5

A B C

Fig. 14. Patching a route in multilevel power save.

rate that fhigh. Another issue is instability in the route if two

neighbors try to patch their place on the route simultaneously.

If a node hears a patch request from one of its neighbors, it

defers from issuing a patch request until the current one is

resolved or a timeout occurs.

We have not evaluated this protocol extension. Adding it to

the protocol and testing it via simulation and/or implementa-

tion is an area of future work.

VI. CONCLUSION

Motivated by the need for power save protocols (for rea-

sons discussed in Section I), we have proposed a link layer

technique and routing protocol that adapts to an application-

defined latency in an energy efficient manner. Like previous

work [1]–[4], we propose placing nodes in different power

save states that tradeoff energy consumption and latency. The

contribution of our work is that we design protocols to handle

k levels of power save states whereas previous work only

focused on the k = 1 and k = 2 cases. Our adaptive sleeping

technique allows nodes to adjust their sleeping interval in

response to the desired latency of data that it is forwarding.

We evaluate our protocols via simulation and find that they

allow end-to-end latency bounds to be achieved with much

less energy consumption than turning power save off. Also,

traditional power save protocols (i.e., k = 2) are unable to

achieve the latency bound in many cases despite consuming

only slightly less energy than our multilevel protocol. Thus,

our technique can maintain a desired latency bound with only

a small increase in energy consumption over traditional power

save protocols and with far less energy consumption than

turning power save off.
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APPENDIX I

MINIMUM ENERGY ROUTING PROOF

Sections I-A, I-B, and I-C give instances of known NP-

complete problems [24], [25]. We use these for the reduction

in our proof in Section I-D.

A. Steiner Tree Problem (ST)

INSTANCE: An undirected graph G = (V, E), an edge cost

function c : E → N , a subset S ⊆ V of required vertices.

SOLUTION: A subtree of G that includes all the vertices

in S. This is called a Steiner tree. Note that vertices in

V \S may be included in the Steiner Tree and are called

Steiner vertices.

MEASURE: Sum of the edge weights in the subtree.

B. Steiner Tree With Unit Edge Weights Problem (ST-UE)

A proof to show that ST is NP-complete is based on a

reduction from the exact covering by 3-sets problem [24].

The ST proof [24] answers the following decision problem:

given a bipartite graph G = (V, E) (the bipartite property is

a sufficient condition for being an undirected graph), a subset

of vertices S ⊆ V , and an integer B, is there a tree T in G

that spans all of the S terminals and has at most B edges?

By design, the ST proof [24] shows that ST is NP-complete

even if the cost function is c : E → 1. Thus, we know that

even though ST-UE (defined below) is a limited case of ST, it

is still NP-complete.

INSTANCE: An undirected graph G = (V, E), an edge cost

function c : E → 1, a subset S ⊆ V of required vertices.

SOLUTION: A subtree of G that includes all the vertices in

S.

MEASURE: Sum of the edge weights in the subtree.

We can see that the measure in ST-UE is equivalent to the

following measure:

MEASURE 2: The number of edges in the subtree.

Trivially, minimizing the number of edges in a subtree also

minimizes the number of vertices in the subtree since VT =
ET + 1.

C. Steiner Tree on Bidirected Graphs (ST-BG)

Any instance of ST (which, of course, includes ST-UE) can

be reduced to ST-BG by replacing every undirected edge eij ∈
E with two directed edges eij and eji

5 and giving both of the

directed edges the same cost as the original undirected edge.

Then, any one node in S, which we denote r, is chosen as the

root.6

Thus, the ST-BG problem (also called the Steiner arbores-

cence problem [24]) is defined as follows.7

INSTANCE: A bidirected graph G = (V, E), an edge cost

function c : E → 1, a subset S ⊆ V of required vertices,

and a root vertex, r.

SOLUTION: A directed subtree of G such that there exists

a path from r to every vertex in S.

MEASURE: Sum of the edge weights in the subtree.

The corresponding decision problem is: given an instance

of ST-BG, is there a solution such that the sum of the edge

weights is less than W ?

5The notation eij denotes an edge between i and j in the undirected case
and a directed edge from i to j in the directed case.

6In the undirected case, declaring a root is unnecessary since every node
can reach every other node in the tree. In the directed case, we specify a root
to create a structure which ensures that the root can reach every other node
in the tree.

7We skip the general definition of ST-BG, where c : E → N , and just
focus on the version with unit edge weights.



D. Minimum Energy Routing for Multilevel Power Save

(MER)

We now define the MER problem and show that it is

NP-complete using a reduction from ST-BG. As described in

Section III, we only consider the latency induced by the power

saving protocol because this delay tends to be larger relative to

contention and queuing delay in the networks that we consider.

Thus, the li term mentioned below is only a function of a

node’s power save state and not a function of the number of

flows that it and its neighbors are forwarding.

INSTANCE: A bidirected graph G = (V, E), a set of flows

F (i.e., a set of source-destination tuples), a maximum

end-to-end latency threshold for a path L, and k the

number of power save states available to each node. Each

power save state has an associated latency, li, and energy

consumption, gi (where 1 ≤ i ≤ k). For i < j, li ≤ lj
and gi ≥ gj . When a node is in PS state i, its energy

consumption is gi and the latency cost of all its incoming

edges is li.

SOLUTION: A set of power save states for each node such

that each flow in F can be routed without L being

violated for any of the flows.

MEASURE: Sum of the energy consumed by the power save

state (i.e., gi) of each node in the network.

The decision problem that we use for MER is: can we assign

power save states for an instance of MER such that the sum

of the energy consumed by the power save state of each node

is less than Y ?

It is easy to verify that MER is in NP. Given a set of PS

states for each node, all of the link costs in the network can

be fixed (i.e., the appropriate value of li for all incoming links

to a node). Then, we do shortest path routing on the weighted

graph obtained by using latencies as edge weights for each

flow in F and verify that the cost of each path is less than

L, which can be done in polynomial time. Additionally, we

verify that the sum of all the power save states is less than Y

which can be done in polynomial time.

For convenience, we consider a special case of MER where:

• k = 2
• g1 = 1 and g2 = 0
• l1 = 1 and l2 = |V |
• L = |V | − 1
• All flows originate from one sender

• A flow is capable of satisfying the latency constraint.

This can be checked in polynomial time by placing all

nodes in their highest energy state and computing a flow’s

shortest path cost. If this cost is greater than L, then

we can immediately decide that the instance of MER is

unsolvable.

By showing that the above special case of MER is NP-

complete, we will have proved the general MER problem to

be NP-complete. We do so with a reduction from ST-BG.

We show that given any instance of the ST-BG problem, it

is possible to construct an instance of the MER problem such

that the instance of ST-BG has a total edge weight less than W

if and only if the MER instance has a total energy consumption

less than W + 1.

Given an instance of ST-BG, we convert it to an instance

of MER as follows. The graph, G, from ST-BG is used as the

graph in MER. The root, r, from ST-BG is the one sender in

our special case of MER and each vertex in ST-BG’s S set

corresponds to a receiver in MER.

Now, we need to show that an instance of ST-BG has a total

edge weight less than W if and only if the corresponding MER

instance has a total energy consumption less than W + 1.

• If ST-BG Has Total Edge Weight < W : Then, we select

all of the nodes in ST-BG’s subtree to remain in PS state

1 while all other nodes are put in PS state 2. Since the

cost of each edge in the tree is 1 and there can be at most

|V | − 1 edges in the tree, then the latency must be less

than or equal to L. This is because each of the selected

nodes has an incoming latency of l1 = 1 and there can

be at most |V | − 1 edges in the tree since there are |V |
nodes total. Thus, the total latency is at most L = |V |−1.

Since there must be at most W − 1 edges in the subtree,

there can be at most W nodes in PS state 1 and, thus,

the sum of the energy consumption in the network is less

than W + 1.

• If MER Has Total Energy Consumption < W +1 and

the Latency ≤ L = |V |−1: Then, all the nodes on every

routing path must be in PS state 1 or else the latency

would be greater than L (since one node in PS state 2

would make the latency at least |V | > L). Thus, each

node on the routing paths is using one unit of energy.

Therefore, if the total energy consumption is less than

W + 1, then at most W nodes in the network are using

one unit of energy and the source can reach all receivers.

Since the source, each receiver, and all intermediate nodes

on the paths form a tree with at most W nodes, we have

a subtree with at most W − 1 edges.
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