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� “The number of WiFi hotspots in the United States increased 
from 3,400 to 21,500 between 2002 and 2004 […] that number is 
expected to grow […] to 64,200 by 2008, a 31.5 percent compound 
annual growth rate.” – David A. Gross,
US Ambassador Bureau of Economic and Business Affairs

� “The number of RFID tags produced worldwide is expected to 
increase more than 25 fold between 2005 and 2010, reaching 33 
billion, according to market research company In-Stat.” – EE Times

� “IDC now estimates there will be more than 100 million Bluetooth 
devices worldwide by the end of the year, and In-Stat/MDR 
expects a compound annual growth rate of 60 percent from 2003 
to 2008.” – CNET.com

� TinyOS Sensor Operating System: Typically 50-200 downloads 
per day – TinyOS Website

Wireless Networking: 
It’s Kind of a Big Deal
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Emerging Wireless Applications
Copyright NCSA/UIUC
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Why Use Multihop Wireless?
� Connectivity: Extend infrastructure at a low cost

� Mesh and community Networks

� Ease of Deployment: Extend infrastructure quickly
� Disaster scenarios
� Sensor networks

� Performance: Increased capacity per node
(W = Channel bitrate, N = Number of nodes)

� Vehicular networks
� Military operations

⎟
⎠
⎞

⎜
⎝
⎛

N
WO ⎟

⎠

⎞
⎜
⎝

⎛
N

WO

Single Hop 
Network

Multihop Network 
[Gupta00Capacity]



5

Some Research Challenges
� Improve performance

� Exploit diversity (e.g., multiple channels, bitrates)
� Security and privacy

� Resource constraints on cryptography
� Tapping the channel to eavesdrop is much easier

� Energy efficiency
� The power cable has proved remarkably resilient in 

this “wireless” world
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Summary of My Work 

� Exploiting channel diversity for secure key 
distribution in sensor networks

� Adaptive energy efficient protocols for 
wireless devices

� Protocol implementations
�Power save broadcast on sensors (TinyOS)
�User-level ad hoc routing protocol in Linux



7

Talk Outline

� Background on Wireless Sensor Network 
Key Distribution

� Leveraging Channel Diversity for Key 
Distribution

� Adaptive Energy-Saving Protocols
� Future Research
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� Leveraging Channel Diversity for Key 
Distribution

� Adaptive Energy-Saving Protocols
� Conclusion



9

Key Distribution Problem 
Statement
� After deployment, a sensor needs to establish 

pairwise symmetric keys with neighbors it 
discovers for confidential and authenticated 
communication

� Applications
� Secure aggregation
� Exchanging hash chain commitments (e.g., for 

authenticated broadcast)
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Design Considerations for Wireless 
Sensor Networks
� Resource constrained
�Energy, computation, memory, bitrate

� Large scale deployments
�May need thousands (or more) of devices

� Topology may be uncontrolled
�Specific device’s location unknown in 

advance
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Design Space
� Every sensor deployed with global 

key
☺ Minimal memory usage, incremental 

deployment is trivial
/ If one node is compromised, then all 

links are compromised

� Separate key for each sensor pair
☺ One compromised node does not affect 

the security of any other links
/ Required sensor storage scales linearly 

with network size
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Outline of Solution Approaches

� Each sensor shares a secret key with a trusted device 
(T) [Perrig02Winet]
� T used as intermediary for key establishment
� T must be online and may become bottleneck

� Key Predistribution [Eschenauer02CCS]
� Sensors pre-loaded with subset of keys from a global key pool
� Tradeoff in connectivity and resilience to node compromise
� Each node compromise reduces security of the global key pool
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Outline of Solution Approaches

� Transitory key [Zhu03CCS]
� Sensors use global key to establish pairwise key and 

then delete global key
� Node compromise prior to deletion could compromise 

entire network

� Using public keys (e.g., Diffie-Hellman)
� High computation cost
� But, is it worth it when this cost is amortized over the 

lifetime of a long-lived sensor network?
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Outline of Solution Approaches

� Broadcast plaintext keys [Anderson04ICNP]
� If an eavesdropper is not within range of both 

communicating sensors, then the key is secure
� Assumes very small number of eavesdroppers
� No way to improve link security if eavesdroppers are 

in range
�We propose using the underlying wireless channel 

diversity to greatly improve this solution domain
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Talk Outline
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Wireless Channel Diversity

� Radios typically have multiple non-
interfering, half-duplex channels
�802.11b: 3 channels
�802.11a: 12 channels
�Zigbee (used on Telos motes): 16 channels

� At any given time, an interface can listen 
to at most one channel



18

High Level View of Our Work

Bob

Alice

Eve

Channel 1

Channel 2
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High Level View of Our Work

� Given c channels:
Pr(Eve hears Bob’s packet | Alice hears Bob’s packet) = 1/c

� If Alice hears M of Bob’s packets, then the probability 
that Eve heard all of those packets is (1/c)M

� As (1/c)M → 0:
The packets Alice heard can be combined to create Alice 
and Bob’s secret key
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Threat Model
� Adversary’s primary objective is to learn pairwise keys

� Can compromise node and learn its known keys
� Can overhear broadcast keys

� Adversary’s radio capability is similar to that of sensors 
[Anderson04ICNP]
� Receive sensitivity
� One radio

� Multiple adversary devices may collude in their 
knowledge of overheard keys
� Collusion in coordination of channel listening is future work

� Denial-of-Service is beyond the scope of our work
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Protocol Overview

� Predeployment
�Give each sensor a unique set of authenticatable 

keys 
� Initialization

� Broadcast keys to neighbors using channel diversity
� Key Discovery

� Find a common set of keys shared with a neighbor
� Key Establishment

� Use this set to make a pairwise key that is secret with 
high probability
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Phase 1: Predeployment

� Each sensor is given λ keys by a trusted entity
� Keys are unique to sensor and not part of global pool
�λ presents a tradeoff between overhead and security

� The trusted entity also loads the Merkle tree 
hashes needed to authenticate a sensor’s keys
�O(lg N) hashes using Bloom filter authentication
�O(lg λN) hashes using direct key authentication
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Phase 2: Initialization

� Each sensor follows two unique non-
deterministic schedules:
�When to switch channels

� Chosen uniformly at random among c channels

�When to broadcast each of its λ keys
� Thus, each of a sensor’s λ keys is overheard by 

1/c neighbors on average
� Different subsets of neighbors overhear each key

� Sensors store every overheard key
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E
C, E

C, D, E

Initialization Example

A B

D

C

E

Nodes that 
know all of A 
and B’s keys:

Ø

= Channel 1

= Channel 2
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Phase 3: Key Discovery

� Goal: Discover a subset of stored keys known to 
each neighbor

� All sensors switch to common channel and 
broadcast Bloom filter with β of their stored keys
� Bloom filter for reduced communication overhead

� Sensors keep track of the subset of keys that 
they believe they share with each neighbor
�May be wrong due to Bloom filter false positives
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Key Discovery Example

A

B

C

A’s Known Keys
B’s Known Keys

C’s Known Keys

A and C’s Shared Keys

A and B’s Shared Keys
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Phase 4: Key Establishment

1. Generate link key: 
kuv = hash(k1 || k2 || k3)
2. Generate Bloom filter for kuv:
BF(kuv)
3. Encrypt random nonce (RN)
with kuv: E(RN, kuv)

1. Find keys in BF(kuv)
2. Use keys from Step 1
to generate kuv

3. Decrypt E(RN, kuv)
4. Generate E(RN+1, kuv)

u’s believed set of shared keys with v =  {k1, k2, k3}

u v

E(RN, kuv) || BF(kuv) E(RN+1, kuv)kuv
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Simulation Results
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Simulation Results
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Using Path Diversity
� Path diversity can be used to get a small number of 

compromised links to zero
� Similar to multipath reinforcement proposed elsewhere

� Node disjoint paths needed to combat node compromise
� Only link disjoint paths needed to combat eavesdroppers

A D
B

C

= Secure Link

= Compromised 
Link

k1

k2

kAD = 
hash(k1 || k2)
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Simulation Results for Example 
Topology
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Key Distribution Summary

� Many distinct solutions have been proposed
� No “one size fits all” approach emerges

� Our work is the first to propose using channel 
diversity for key distribution
� Results show significant security gains when even 

one extra channel is used
� Path diversity can further improve key security
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Talk Outline
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Won’t Moore’s Law Save Us?
NO!!!

From “Thick Clients for Personal Wireless Devices”
by Thad Starner in IEEE Computer, January 2002

1200 x
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Common Power Save Protocol 
Design

� L and S are static values regardless of traffic
� Design used in IEEE 802.11 as well as sensor 

protocols (e.g., B-MAC and STEM)

L S
LISTEN

SLEEP

Sleep Until Timer 
Fires to Start Listening

Check for 
Wake-Up Signal
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Our Approach: Adaptive Energy-
Saving Protocols

� Adapt listening (L) based on channel state
� Adapt sleeping (S) based on traffic arrivals and 

desired latency

L1 S1

LISTEN

SLEEP

Check for 
Wake-Up Signal

Sleep Until Timer 
Fires to Start Listening

L2 S2 L3
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Protocol Design Space

Covered in this talkOur in-band 
techniques are 

applicable 

Out-of-
Band

Our multilevel 
routing work

Our MASS 2005 
paper

In-Band

Adaptive SleepingAdaptive Listening
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Out-of-Band Protocol Example

Sender Ctrl.
Channel

S

Signal

Receiver Ctrl.
Channel

Data
Receiver Data
Channel

Data
Sender Data
Channel

Channel 
Idle

Channel 
Busy

Time

Data

Data

Wake up in 
S time

S

L
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How Do You Choose S?

� If energy is our only concern then S can 
be arbitrarily large
�However, the queue may become large

� Since sensors are resource limited, we 
address this queue constraint
� If a device’s queue reaches a threshold, Q, 

then it must start transmitting packets soon
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Adaptive Sleeping Overview

� Sender and receiver schedule a future wake-up 
time based on the traffic rate

� If the sender’s queue reaches Q packets before 
a scheduled wake-up:
� Then the sender wakes up the receiver via the out-of-

band control channel
� All nodes periodically check control channel for 

wake-up signal
� If signal detected Æ Turn on data radio
� If data packet is for another node Æ Data radio 

returns to sleep
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Adaptive Sleeping Example
Sender Ctrl.
Channel

S

Sig

Receiver Ctrl.
Channel

D
Receiver Data
Channel

Sender Data
Channel

Channel 
Idle

Channel 
Busy

Time

D

D

D

D

D

D

D

< S

Sender’s
Queue

Q = 2t1 t2
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Adaptive Sleeping Tradeoff: 
S Too Small

Sender’s Packet
Queue Arrivals

S
Receiver Data
Channel

Sender Data
Channel

Channel 
Idle

Channel 
Busy

Time

D

D

D

Energy Wasted
Checking for
Data Packet

S S S
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Adaptive Sleeping Tradeoff: 
S Too Large

Sender Ctrl.
Channel

S

Sig

Receiver

Neighbor 1

Time

Sender’s
Queue

Q = 2t1

D D D

Sig

D D

S

Neighbor N

t2

Energy Wasted
Waiting for
Receiver ID

Data Channel
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Adaptive Sleeping Tradeoff
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Goal: Adapt S based on 
traffic arrivals to minimize 
energy consumption
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Adaptive Sleeping Analysis

� Based on analysis, we found that S is optimized 
according to the equation:

S = γ (1/R)
� R = Packet arrival rate at sender

� Can be estimated with a weighted moving average
� γ = Function of Q and the number of neighbors 

of the sender (nbrs)
� Can be calculated offline when Q and nbrs are known
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Adaptive Sleeping: 
Time-Varying Traffic Rate Results
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Adaptive Sleeping: 
Multihop Topology Results
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Talk Outline
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Talk Outline

� Background on Wireless Sensor Network 
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� Adaptive Energy-Saving Protocols
� Conclusion
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Future Research: 
Multihop Wireless Networks
� Performance
�Efficient use of physical-layer diversity
�Opportunistic channel usage
� Integrating application knowledge in network 

protocol design
� Security and Privacy 
�Physical-layer diversity to counter attackers
�Distributed detection of misbehavior
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Future Research: 
Multihop Wireless Networks
� Experimental testbeds
�Test protocols in a realistic setting
�Address implementation issues
�Prior experience

� Implementation in TinyOS on sensor hardware
� User-level routing protocol for hybrid networks 

limited to several hops from access point
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� Power save broadcast protocol in TinyOS
on Mica2 motes

� User-level routing protocol for ad hoc 
networks limited to several hops from 
access point

Implementation Experience
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Research Summary

[IEEE WCNC 2004, 
IEEE Trans. on Mobile 

Computing 2005]

Our techniques are 
applicable 

Out-of-
Band

Multilevel routing
[IEEE Broadnets 2004]

[IEEE MASS 2005]In-Band
Adaptive SleepingAdaptive Listening

� Energy-Latency Tradeoff for Broadcast Dissemination 
[IEEE ICDCS 2005]

� Implementation Experience in TinyOS (sensors) and Linux

� Secure Key Distribution [IEEE Infocom 2006]
� Adaptive Energy-Saving Protocols
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Thank You!

http://www.crhc.uiuc.edu/~mjmille2
mjmille2@uiuc.edu

Acknowledgements to my adviser Prof. Nitin Vaidya, 
Prof. Indranil Gupta, Cigdem Sengul, 

and my research group
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Sources (1/2)
(Ordered by First Appearance)
� The Other Wireless Revolution by David A. Gross

� http://www.state.gov/e/eb/rls/rm/2005/48757.htm
� Report: RFID production to increase 25 fold by 2010 in 

EE Times
� http://tinyurl.com/aangg

� CNET's quick guide to Bluetooth headsets on CNET.com
� http://tinyurl.com/dslev

� TinyOS Community Forum: Stats
� http://www.tinyos.net/stats.html

� NCSA/UIUC Internet Visualization Graphic
� http://tinyurl.com/d7qgr
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Sources (2/2)

� Champaign-Urbana Community Wireless Network 
(CUWiN)
� http://cuwireless.net/

� DakNet
� http://www.firstmilesolutions.com/products.php?p=daknet
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Properties of Preamble Sampling

� No synchronization necessary
� We require synchronization

� Larger preambles increase chance of collisions
� We restrict CS signals to a time when data is not being 

transmitted
� In our technique, interference is tolerable between CS signals

� Broadcasts require preamble size be as long as a BI Æ
Exacerbates broadcast storm
� We do not require extra overhead for broadcast

� Only one sender can transmit to a receiver per BI
� We allow multiple senders for a receiver per BI
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Is time synchronization a problem?

� Motes have been observed to drift 1 ms every 
13 minutes [Stankovic01Darpa]

� The Flooding Time Synchronization Protocol 
[Maróti04SenSys] has achieved synchronization 
on the order of one microsecond

� Synchronization overhead can be piggybacked 
on other broadcasts (e.g., routing updates)

� GPS may be feasible for outdoor environments
� Chip scale atomic clocks being developed that 

will use 10-30 mW of power [NIST04]
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Transition Costs Depend on 
Hardware [Polastre05IPSN/SPOTS]
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How to Save Energy at the 
Wireless Interface

� Sleep as much as possible!
� Fundamental Question: When should a radio 

switch to sleep mode and for how long?

0.003Sleep
30RX/Idle
81TX

Power Consumption (mW)Radio Mode

Specs for Mica2 Mote Radio
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Related Work
� Carrier Sensing

� B-MAC [Polastre04SenSys]: Make the packet preamble as large 
as the duty cycle

� WiseMAC [ElHoiydi04Algosensors]: Send the packet preamble 
during the receiver’s next scheduled CS time

� We apply CS to synchronous protocols
� Dynamic Listening Periods

� T-MAC [VanDam03SenSys]: Extends S-MAC to increase the 
listen time as data packets are received

� DPSM/IPSM [Jung02Infocom]: Extends 802.11 for dynamic 
ATIM windows in single-hop environments

� We use physical layer CS to work in multihop environments 
without inducing extra packet overhead
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Adaptive Sleeping Results
� Simulated using ns-2 and Poisson traffic
� Rate Estimation

� Proposed protocol with Q=2.
� Optimal

� Optimal value of S which minimizes energy over a single hop
� S = ∞

� No timeout triggered wake-ups.  Out-of-band wake-ups occur 
when Q=2 packets are in the queue.

� STEM
� Out-of-band protocol proposed in [Schurgers02Optimizing].  

Special case of our protocol with S = ∞ and Q=1.
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Other Research

� Adaptive Framework for Energy-Saving 
Broadcast [IEEE ICDCS 2005]
� Probabilistic protocol gives flexibility to choose 

tradeoffs in energy, latency, reliability, and overhead 
for broadcast dissemination

� Routing using multiple power save states
�Metrics to find energy-efficient states for nodes on a 

path while achieving a desired latency
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Merkle Tree Authentication

C = hash(O1)
A = hash(C || D)
R = hash(A || B)

Each sensor given 
R and O(lg N)
other hashes

O1

C D E F

O2 O3 O4

A B

R R=?


