
Broadcast Protocols to

Support Efficient Retrieval

from Databases by Mobile

Users

By Anindya Datta, et al.
Presented by Matt Miller

February 20, 2003

Outline

� Motivation

� Problem Statement

� Related Work

� Key Contributions

� Protocol Description

� Evaluation
� Analytical

� Simulation

� Potential Improvements

� Conclusions

Motivation

� Base stations have database items which mobile

devices would like to read over a wireless

channel. Communication is asymmetric.

� Item content changes frequently. Users want to

continually acquire recent versions.

� Some items may be more popular.

� Users are mobile.

� Mobile devices may be energy-constrained.

Problem Statement

� Design a server protocol to determine

which data items to include in the

broadcast and for how long

� Design a client protocol which cooperates

with the server protocol to allow retrieval of

an item whenever it is broadcast while

minimizing energy consumption

Related Work

� Broadcast Organization
� Given the content, how can it be organized efficiently
(e.g., index structures)

� Complementary to proposed work

� Broadcast Disks
� Items broadcast at different frequencies to emulate
disks with varying access times

� Content constructed based on known access
probabilities

� Content set is static

Key Contributions

� Creates a mixed mode of access

� Alters broadcast content to take advantage
of popularity while avoiding excessive
starvation

� Integrates client-side caching

� Analytical models for protocol

� Protocol simulation with detailed energy
model

Server Broadcast Structure

� Uses a (1,m) organization proposed by Imielinkski et al.

� m index segments are uniformly distributed in the current broadcast.
Each segment is identical and tells what data is in the broadcast and
the locations.

� A data block is located between each pair of index segments. This
implies m data blocks per broadcast.

� Index segments implemented with a B-Tree structure for efficient
searching.

Server Broadcast Structure (2)
� Information in each bucket:

� Offset to next index segment

� Offset to end of broadcast

� Indication of whether data was
modified since last broadcast

� Offset to next bucket of DC

� When the DC is scheduled to
be dropped from the
broadcast (EDT)

� Information in index buckets:

� Key value (specifies DC)

� Offset to first bucket of DC

� Offset to first dirty bucket of
DC

� EDT

Broadcast Content

Considers two possibilities:

1. Constant Broadcast Size (CBS): Every

broadcast is fixed length. If too few items,

dead air is broadcast. If too many items,

contention algorithm determines set.

2. Variable Broadcast Size (VBS): Every

requested item is included.

CBS Contention

� Server includes items with the highest priorities.

� Items included in order of popularity.

� Priority function
PF: Number of clients are currently interested in an item

IF: Number of consecutive broadcasts an item has not been
included

ASF: How many broadcasts the average wait time (AWC) for
interested clients has exceeded the specified desired wait time
(DWC)

PFIFPriority
ASF

×=

Client Protocol

� On initial probe, if the desired item is will not be in the
next broadcast, make a request. Server assumes client
will remain in cell for RL time units.

� If a client’s desired data item appears in consecutive
broadcasts, only download the buckets which were
modified.

� If the client cannot download the item in consecutive
broadcasts, the entire item must be downloaded.

t t+RL

Client requests item i,

Server increments PFi Server decrements PFi

Time

Metrics

� Access Time (AT): Time from when a
request is first made until the download of
the item is complete

� Tuning Time (TT): Time a client actively
listens to the broadcast

� Normalized Energy Expenditure (NEE):
Amount of energy clients use per data
downloaded. Only used in simulations.

Analysis

� Does not consider IF to make analysis

mathematically tractable

� Assumes clients are only interested in one item

(DCI)

� Calculates probabilities of various scenarios:

� Does download start with index or data?

� Is the DCI in the current broadcast?

� If so, did the client miss the DCI?

Analysis (2)

� From the probabilities, the expected TT and AT

are calculated.

� Basic pattern for TT:

� Time to read first bucket broadcast on initial probe.

� Time to do a logarithmic search on index segment.

Multiply this by the number of broadcasts until the

DCI is included.

� Time to download the DCI.

Analysis (3)

� Basic pattern for AT:

� Time from initial probe until the first index

segment

� Time until either DCI or next broadcast

� Time for each broadcast the DCI is not

included

� Time to download DCI

Analysis Prediction

� CBS: Both AT and TT,

relatively constant with

some decrease at higher

loads due to redundancy.

� VBS: TT will increase due

to larger index segments.

AT increases significantly

over CBS. Increase is

more gradual at high

loads due to redundancy.

CBS

VBS

CBS

VBS

T
T

A
T

Number of Clients

Simulation Setup

� Considers IF in priority computation

� Items are hot or cold to indicate popularity.

Data separated for these two classes.

� Measures energy from four sources:

1. Hard Drive: R/W, idle, sleep

2. CPU: on, sleep

3. Display: on, off

4. Wireless card: transmit, receive, sleep

Simulation Setup (2)

� To test client-side modification, compares
CBS versus a protocol which always
downloads the entire DCI on consecutive
broadcasts (referred to as IVB)

� To calculate NEE the following equation is
averaged for L tracked clients:

total energy consumed /

(size of DCI × number of times downloaded)

Simulation Results

� Client-side caching mainly helps when the load
is low and the item is hot

� Effects of client caching are negligible compared
to choice of server content

� VBS always better at low loads (no dead air) and
if no locality is present (every request filled each
broadcast)

� CBS is better when locality is present and load is
moderate to high because hot items will appear
more frequently at the expense of cold items

Simulation Results (2)

� AT is a better measure of NEE than TT because
idle time dominates. Therefore, only the
denominator causes significant differences to
the metric and it is a function of the latency
between DCI downloads.

� Changing the broadcast size, client mobility,
database size and item update rate will shift and
scale the basic trends by affecting inclusion
contention, load, redundancy and effectiveness
of caching.

Simulation Results (3)

� VBS
� Same for hot and cold items

� Always lower NEE at low loads because no dead air

� Slope will decrease at high loads do to increased redundancy

� CBS
� Hot items will have constant NEE until cold items can

occasionally replace hot items. At high loads, the NEE will
increase rapidly because many cold items exceed their DWC.

� After constant NEE, cold items show rapid increase since there
is much contention among the cold items. The slope will
become more gradual at high loads as cold items exceeding
their DWC will contend more with hot items.

Simulation Results (4)
H
O
T

N
E
E

C
O
L
D

N
E
E

VBS

CBS

CBS

VBS

IVB

Client Arrival Rate

Client Arrival Rate

Potential Improvements

� Protocol
� Integrate security for subscriptions

� More analytical justification for priority computation

� Potentially Influential Factors
� Uplink contention

� Overhead of switching the WLAN card on/off frequently

� NEE is not a good metric if a device’s energy is at critical level

� Simulation
� More realistic popularity model (e.g., Zipf)

� More realistic energy model

� The effects of a large variance for RL (simulation variance is less
than 0.5% of the mean)

� Measure the initial latency of a user request

Conclusions

� Neither protocol is strictly better
� If locality is present, CBS protocol is usually better

� If load is low, VBS is always better

� The effects of client-side caching are
insignificant compared to the choice of
broadcast content.

� AT is a better metric than TT for estimating NEE
because idle time dominates energy and latency
between downloads becomes the significant
factor.

Bonus Slides

Analytical Notation

Simulation Parameters

Energy Consumption Rates (Watts)

� CPU
� Active: 0.25

� Sleep: 0.00005

� Hard Drive
� R/W: 0.95

� Idle: 0.65

� Sleep 0.015

� Display
� On: 2.5

� Off: 0.0

� WLAN Card
� Transmit: 0.4

� Receive: 0.2

� Sleep: 0.1

� Current WLAN Spec
� Transmit: 1.4

� Receive: 1.0

� Idle: 0.83

� Sleep: 0.13

B-Tree Structure

� Every node (other than root) has between t-1

and 2t-1 keys

� A node with n keys must have n+1 children

CBS Contention Detailed

� Server maintains counter, PF, of how many

clients have requested item within specified time

limit (RL).

� Server maintains counter, IF, of how many

consecutive broadcasts a requested item has

not been included. This counter is calculated

with respect to requests made in the last RL time

units. It has a minimum value of one.

CBS Contention Detailed (2)

� For IF, the server only needs to maintain the timestamp of the first
request made in each broadcast period since priority computation is
done at the beginning of a broadcast and two requests arriving in
the same broadcast are estimated to expire in the same broadcast.

� It only has to maintain this timestamp for each previous broadcast
for which it estimates the requesting client has not left.

CBS Contention Detailed (3)

� An adaptive exponential scaling factor, ASF, is

initialized to one and incremented for each

broadcast the AWC is greater than DWC for an

item.

� Priority is then computed:

PFIFPriority
ASF

×=

CBS Contention Detailed (4)

� Intuitively, PF will dominate when all items are
can be included every couple intervals. In this
case, popular items will always be included and
less popular items will alternate for inclusion.

� The IF will allow items to gain priority over more
popular items when it has been passed over
multiple times.

� The ASF term will force the ignoring of an item
to dominate quickly when clients are waiting
longer than the threshold.

