Practical Exploitation of the Energy-Latency Tradeoff for Sensor Network Broadcast

Matthew J. Miller (Cisco Systems) Indranil Gupta (Univ. of Illinois-Urbana)

March 2007

Motes: State of the Art

- TinyOS includes a power save protocol (B-MAC)
- Other add-on protocols are implemented (e.g., S-MAC)
- Do these give broadcast applications sufficient flexibility for energy, latency, and reliability metrics?

Sensor Application #1

- Code Update Application
 E.g., Trickle [Levis et al., NDSI 2004]
- Updates Generated
 Once Every Few Weeks
 - Reducing energy consumption is important
 - Latency is not a major concern

Sensor Application #2

- Short-Term Event
 Detection
 - E.g., Directed Diffusion
 [Intanagonwiwat et al., MobiCom 2000]
- Intruder Alert for Temporary, Overnight Camp
 - \square Latency is critical
 - With adequate power supplies, energy usage is not a concern

Energy-Latency Options

Latency

Review of Previous Work

- Probability-Based Broadcast Forwarding (PBBF) provides two probabilistic parameters
 Allows fine-tuning of the operating point on energy-latency plane
- Can be use with any protocol that:
 - Has scheduled sleep intervals
 - Can awaken neighbors on-demand
 - Can awaken all neighbors at the same time to receive a broadcast
- Such protocols include B-MAC and 802.11 PSM

Probabilistic Protocol

Probability-Based Broadcast Forwarding (PBBF)

- Introduce two parameters to sleep scheduling protocols: p and q
- When a node is scheduled to sleep, it will remain active with probability q
- When a node receives a broadcast, it sends it immediately with probability p
 - With probability (1-p), the node will wait and advertise the packet during the next AW before rebroadcasting the packet

PBBF Comments

- p=0, q=0 equivalent to the original power save protocol
- p=1, q=1 approximates the "always on" protocol
 Still have the advertisement window overhead

Effects of p and q on metrics:

	Energy	Latency	Reliability
p ↑		\rightarrow	\rightarrow
(Immediate Send)		if q > 0	if q > 0
q ↑	1	\rightarrow	↑
(Stay On)		if	if p > 0

Energy-Latency Tradeoff

Contributions in This Paper

- Add a new extension to PBBF for more control over reliability and packet overhead
- Implement PBBF in TinyOS on top of B-MAC
 - Proof-of-concept that validates previous work's simulation trends
 - Demonstrates versatility of PBBF
 - Previous work used 802.11 PSM as the base protocol

PBBF Extension: r parameter

If a broadcast is sent immediately then, with probability r, the packet is sent a second time according to the original power save protocol

Effects of r Parameter

Improves reliability, but increases energy consumption, latency, and overhead

	Energy	Latency	Reliability	Overhead
p ↑		\downarrow	\downarrow	
if r = 0		if q > 0	if q < 1	
q ↑	1	\downarrow	1	
if r = 0		if p > 0	if p > 0	
r ↑	1	1	1	1
if p > 0				

B-MAC [Polastre et al., SenSys 2004]

Uses Preamble Sampling

Our TinyOS Architecture

Experimental Setup

- Mica 2 Motes (433 MHz) with one broadcast sender and eight one-hop neighbors
- Broadcast sent every 2.5 s during a 30 s run
- B-MAC parameters
 - □ Duty cycle = 135 ms
 - Preamble = 371 bytes (155 ms @ 19.2 kbps)
 - Carrier sense time = 8 ms

As r increases: reliability increases but so does packet overhead

Experimental Results p=1 and q=0

As r increases: energy consumption and latency increase (tradeoff for improved reliability)

Conclusion

- We have implemented PBBF for TinyOS
 Code can be downloaded at: www.matthewjmiller.net/code
- Shown versatility of PBBF concept
 Can be used with B-MAC in addition to 802.11 PSM
- New parameter can adjust reliability
 Improved reliability comes at the cost of
 - degradation to packet overhead, energy consumption, and latency

Questions???

Matthew J. Miller www.matthewjmiller.net

Indranil Gupta www-faculty.cs.uiuc.edu/~indy