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Abstract— As devices become more reliant on battery power, it
is essential to design energy efficient protocols. While there is a
vast amount of research into power save protocols for unicast
traffic, relatively little attention has been given to broadcast
traffic. In previous work [1], we proposed Probability-Based
Broadcast Forwarding (PBBF) to address broadcast power save
by allowing users to select a desired tradeoff between energy
consumption, latency, and reliability. In this paper we extend our
previous work in two ways. First, we introduce a new parameter
that allows a tradeoff between reliability and packet overhead
to give users more options. Second, we implement PBBF on
the TinyOS platform [2] to evaluate it beyond the analysis and
simulation from our previous work. Our evaluation demonstrates
the tradeoffs possible using PBBF on sensor hardware.

I. INTRODUCTION

The relatively small improvement in battery energy density

recently [3] necessitates the need for energy efficient protocols

to control the rate at which energy is depleted. To this end,

many proposed power save protocols increase the time that a

device’s radio sleeps while providing acceptable latency and

throughput. Work in this domain focuses almost exclusively

on unicast traffic. Our previous work on Probability-Based

Broadcast Forwarding (PBBF) [1] was the first to explore

the energy-latency tradeoff for broadcast traffic. Multihop

broadcast is used in many wireless network applications, such

as discovering routing paths, sinks querying sensors for data,

and distributing code updates throughout the network.

With respect to broadcast, power save protocols generally

expose two options to the user. First, if no power save is used,

then the broadcast can achieve a relatively low latency, but at

the expense of large energy costs to listen for broadcasts. The

second option is to use the power save protocol. This option

conserves much more energy than the first, but has a high

latency that may be unacceptable to some applications.

In previous work [1], we proposed a lightweight protocol to

augment existing protocols that allows broadcast propagation

to be more energy efficient while still achieving a desired

latency. In this paper, we extend that work in two ways:

• Introduce a parameter to control the reliability-overhead

tradeoff: Previously [1], we proposed two parameters

(discussed in Section III) that present tradeoffs in energy
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consumption, latency, and reliability. By introducing a

third parameter (described in Section IV) we allow an-

other tradeoff in reliability and packet overhead.1

• Implement PBBF in TinyOS [2] on top of B-MAC [4]:

Our previous work explored PBBF via analysis and

simulation. In this work, we implement the protocol in

TinyOS [2] (described in Section V) and evaluate the

performance in Section VI. Also, our previous work

demonstrated PBBF on top of 802.11 Power Save Mode

(PSM) [5]; in this work it is implemented on top of B-

MAC [4] to demonstrate PBBF’s versatility.

II. RELATED WORK

There have been many power save techniques proposed for

unicast traffic [6]. Our work [1] was the first to study power

save with broadcast traffic by proposing PBBF (Section III).

PBBF uses probability-based forwarding for energy efficiency.

While PBBF was the first to propose this for power save, other

protocols use probabilistic broadcast forwarding for other

reasons. Most notably, Haas et al. [7] designed a protocol

where nodes only forward a broadcast probabilistically. Thus,

the broadcast is capable of reaching most of the nodes in

the network while reducing overhead. This is based on the

observation that a broadcast flood typically has a high level of

redundancy [8]. With PBBF, we try to use this redundancy to

reduce the energy consumed by the broadcast.

TinyOS [2] is an operating system designed at Berkeley

specifically for sensors. It favors simplicity and clean design

by using a single-thread of execution and a component-based,

modular architecture. B-MAC [4] is TinyOS’s default power

save protocol. In Section V, we integrate PBBF on top of B-

MAC. B-MAC uses preamble sampling which means that the

packet preamble is long enough to be detected by all nodes

that are periodically sampling the channel in between sleep

periods (i.e., the preamble must be slightly longer than the

sleep time between sampling periods). When sleeping nodes

sample the channel and detect the preamble, they remain on

to receive the entire packet. See [4] for more details.

1While the third parameter has minor effects on latency and energy
consumption as well, these metrics are dominated by the other two parameters.



III. PROBABILITY-BASED BROADCAST FORWARDING [1]

In this section, we review our previous work. Probability-

Based Broadcast Forwarding (PBBF) can be used with any

power save protocol that has the following characteristics:

1) Nodes are scheduled to sleep at certain times and can

be awakened on-demand when a neighbor wishes to

communicate.

2) Some mechanism ensures that all of a node’s neighbors

are awake at the same time to receive a broadcast.

In [1], we use IEEE 802.11 PSM [5] as the base protocol to

demonstrate PBBF and, in Section V, we use B-MAC [4] as

the base protocol. The goal of PBBF is to achieve a specified

reliability, with high probability, while allowing a wide-range

of tradeoffs in energy consumption and latency. Specifically,

we focus on two definitions of reliability in this work: (1) the

average fraction of nodes that receive a broadcast and (2) the

average fraction of broadcasts received by a node.

PBBF introduces two new parameters to a power save

protocol: p and q. The first parameter, p, is the probability

that a node rebroadcasts a packet in the current active time

even though not all neighbors may be awake to receive the

broadcast. With probability (1 − p), the node waits to send

the packet according to the power save protocol. The second

parameter, q, is the probability that a node remains on after

the active time when it normally would sleep (the length of

time that a node remains on is a parameter of the power save

protocol being used). With probability (1−q), the node sleeps

as it would in the original power save protocol. Even with these

modifications, a node still only rebroadcasts a packet once. In

Section IV, we introduce a third parameter that allows a node

to rebroadcast a packet twice for added reliability.

Figure 1 shows pseudo-code of changes to any sleep

scheduling protocol required for PBBF. The original sleep

scheduling protocol is a special case of PBBF with p = 0
and q = 0. The always-on mode (i.e., no active-sleep cycles)

can be approximated by setting p = 1 and q = 1. PBBF

may be slightly different from always-on in this case. For

example, in 802.11 PSM, there is extra byte overhead (e.g.,

sending advertisements) and temporal overhead (i.e., PBBF

cannot send data packets during the advertisement window).

Intuitively, p and q have the following effects:

Energy: As q increases, energy consumption increases.

Changing p has a negligible effect on this metric.

Latency: As q increases, latency decreases, provided that p >

0. As p increases, latency decreases, provided that q > 0.

Reliability: As q increases, reliability increases, provided that

p > 0. As p increases, reliability decreases, provided that

q < 1. When p increases, there is a greater probability

that a node rebroadcasts the packet immediately. Thus,

for a fixed q < 1, there is a greater chance that some

of its neighbors do not receive the broadcast since they

chose to sleep.

If the listed conditions (e.g., p > 0 for latency and reliability

as q increases) are not met, then the metric is unaffected.

SLEEP-DECISION-HANDLER()
1 /* Called at the end of active time */
2 /* If stayOn is true, then remain on; else sleep*/
3 stayOn← false
4
5 if DataToSend = true or DataToRecv = true
6 then
7 stayOn← true
8 else if UNIFORM-RAND(0, 1) < q
9 then stayOn← true

RECEIVE-BROADCAST(pkt)
1 /* Called when broadcast packet pkt is received */
2 if UNIFORM-RAND(0, 1) < p
3 then SEND-BROADCAST(pkt)
4 else ENQUEUE(nextPktQueue, pkt)

Fig. 1. Pseudo-code for PBBF.

RECEIVE-BROADCAST(pkt)
1 /* Called when broadcast packet pkt is received */
2 if UNIFORM-RAND(0, 1) < p
3 then SEND-BROADCAST(pkt)
4 if UNIFORM-RAND(0, 1) < r
5 then ENQUEUE(nextPktQueue, pkt)
6 else ENQUEUE(nextPktQueue, pkt)

Fig. 2. Pseudo-code for r parameter in PBBF.

IV. PBBF EXTENSION

As mentioned in Section III, the PBBF parameters p and q

provide a tradeoff in energy consumption, latency, and relia-

bility for broadcast dissemination. Now, we propose another

PBBF parameter that induces an overhead tradeoff in addition

to the aforementioned metrics. We denote this parameter as

r. When a sensor decides to immediately transmit a broadcast

packet according the p parameter (as described in Section III),

it will broadcast the packet a second time with probability r.

If the packet is broadcast for a second time, then the second

transmission is advertised according to the sleep scheduling

protocol’s original protocol. The pseudo-code for this PBBF

extension is shown in Figure 2.

We can see that the r parameter induces an overhead

tradeoff into PBBF. By increasing r, we increase the reliability

of a broadcast at the expense of increasing the packet overhead

in the network. At the extreme, if r = 1, then reliability should

be close to 100% regardless of the p and q values, but each

node is broadcasting every packet twice. This gives users yet

another control parameter to achieve a desired tradeoff in the

energy consumption, latency, reliability, and overhead planes.

V. IMPLEMENTATION

We implemented PBBF in TinyOS 1.1.15 [2] for the Mica2

Mote [9] sensors. This serves as a proof-of-concept for the

protocol and provides results from a real-world communication

environment. PBBF is implemented on top of a different sleep

scheduling protocol than the 802.11 PSM protocol that was



the basis for the simulations in [1]. This demonstrates the

versatility of PBBF. Additionally, we added the extension to

the PBBF protocol described in Section IV.

We chose to implement PBBF in TinyOS [2] since this

is a widely used open-source sensor operating system. Its

adoption in the research community has led to a relatively

stable system with significant documentation. For hardware,

we use the Mica2 [9] platform since it has two power save

protocols implemented for it.

The two power save protocols available on the Mica2

platform were S-MAC [10] and B-MAC [4]. Either would have

been appropriate for our PBBF implementation. We chose B-

MAC over S-MAC for reasons discussed in [11].

As described in Section II, B-MAC uses preamble sampling

for in-band power saving. Sensors wake up according to a

specified duty cycle and carrier sense the channel. If the

channel is idle, the sensor returns to sleep until the next sched-

uled carrier sense period. If the channel is busy, the sensor

continues listening to channel in anticipation of receiving a

pending data packet. When a node has data to transmit, it

attaches a preamble longer than the duty cycle in order to

guarantee that all nodes will carrier sense the channel at some

point during the preamble and continue listening.

To implement PBBF on B-MAC, we made these changes:

• When a node carrier senses the channel idle during its

duty cycle, with probability q, it continues listening to the

channel until its next scheduled carrier sensing period.

• When a node has a packet to rebroadcast, with probability

p, it transmits the packet without the long preamble.

In this situation, most of the node’s neighbors will not

carrier sense the preamble and, hence, not receive the

broadcast packet at that time. With probability (1−p), the

node will rebroadcast the packet with the long preamble

so that its neighbors will carrier sense it and receive the

subsequent data packet.

• When a node rebroadcasts the packet without the long

preamble (as discussed in the previous item above), with

probability r, it will broadcast the packet a second time.

This second broadcast will use the long preamble.

The architecture we used for our implementation is shown

in Figure 3. The solid arrows in the figure represent the

interface that connects two modules. The notation A
I
→ B

indicates that component B implements interface I and that

component A uses B’s implementation of interface I . The

dashed arrows indicate the message type that the connected

module uses to send and/or receive via GenericComm.

Details about the interfaces and packet types are in [11]. The

GenericComm, UART, and CC1000Radio2 components are

already implemented in TinyOS. We made some modifications

to the CC1000Radio modules, but used these components, for

the most part, in their current TinyOS instantiation. We now

describe the functionality of each component from Figure 3.

DummyBcastSrc: This is the application to test PBBF. The

node with ID 0 is set as the broadcast source and transmits

2CC1000Radio is an abstraction for the modules listed in the dotted lines.
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Fig. 3. TinyOS architecture for PBBF implementation. The solid rectangles
are modules (CC1000Radio is an abstraction for the three modules listed
in the dotted lines). The solid arrows represent the major interface(s) that
connect modules. The incoming dashed lines to GenericComm represent
the message types the connected module uses.

a broadcast periodically at a desired rate. Non-source

nodes that receive broadcast packets pass information to

the Stats module to collect experimental data.

DummyBcastSrc also serves as the link to the se-

rial port (UART) for communication with a computer.

The module also passes control packets (e.g., what p,

q, and r parameters to use for a particular run) to

CtrlPktHandler. Finally, it maintains all the timers

for when an experimental run ends and when statistics

are sent back to the broadcast source.

SimplePbbfBcast: The main functions of this module are du-

plicate suppression and queuing for DummyBcastSrc’s

broadcast packets. Control packets are also passed to

CtrlPktHandler and Stats is notified of every

broadcast sent or received.

CtrlPktHandler: This module handles incoming control

packets by setting p, q, and r to the values specified in

the packet. This is done via its connection to Pbbf.

Stats: This module keeps track of statistics for our experi-

ments and aggregates the information in packets to send

back to the broadcast source. Via DummyBcastSrc, it

keeps track of the end-to-end latency of received packet

as well as the total number of unique, application-layer

received packets. SimplePbbfBcast informs Stats

of the total number of data packets sent and received.

Pbbf signals to Stats when a packet was transmitted

twice due to the r parameter (as discussed in Section IV).

CC1000Radio signals this component whenever the

radio switches to and from sleep mode to track the total

fraction of time spent sleeping.

This module also provides an end-to-end retransmis-

sion scheme for extra reliability in reporting experimen-

tal stats. This is somewhat useful since the link layer



retransmission scheme seems to occasionally fail.

GenericComm: (Existing TinyOS module) This serves to

multiplex and demultiplex packets in TinyOS based on

the packet type. Essentially, the packet type serve as ports

do in traditional TCP/UDP communications

UART: (Existing TinyOS module) This component provides

the lower level communication with the serial port.

Pbbf: This is the actual implementation of the PBBF pro-

tocol. It is placed between GenericComm and the

CC1000Radio components. GenericComm is analo-

gous to the network layer and CC1000Radio provides

the medium access and the physical layer.

The p, q, and r values that Pbbf uses are input from

CtrlPktHandler. B-MAC notifies Pbbf of a deci-

sion point for whether to sleep via the PbbfNotifier

interface. At this point, Pbbf compares the current q

value to a random number to decide whether to tell

the radio to sleep, as would be normal operation, or

continue listening to the channel, which is part of PBBF.

For every packet received from GenericComm, PBBF

decides, based on the p and r values, whether to use

a long preamble and whether to transmit the packet

twice, respectively. This layer also provides link layer

retransmissions since this feature is not implemented in

lower layers (i.e., CC1000Radio).

CC1000Radio: (Existing TinyOS modules) These components

provide lower level communication with the CC1000

radio [12] on Mica2 Motes. Additionally, the B-MAC [4]

implementation is integrated into these components.

VI. EXPERIMENTAL RESULTS

To test our work, the broadcast source was attached to a

laptop via a MIB510CA board. This sensor was also the sink

for reporting statistics back to the laptop. Our Motes used the

433 MHz band. We were constrained to using only nine Motes

total, so the other eight Motes served as broadcast receivers.

We only experimented on a topology where all of the

devices are in range of the broadcast source (and each other)

since statistics reporting was too unreliable in a multihop

setting. This setup was also useful since the number of Motes

was limited and PBBF relies on some amount of density to

operate efficiently. Most importantly, this simple scenario is

sufficient for demonstrating key properties of PBBF.

In our experiments, the source transmitted a broadcast every

2.5 s. Each experiment ran for 30 s, which results in 11 packets

being sent per run (the first packet is not sent immediately

when the test commences). Each data packet uses the standard

TinyOS format with 2 synchronization bytes, 5 header bytes,

2 CRC bytes, and a payload of 29 bytes. The default preamble

adds an additional 8 bytes, though, as described in Section II.

B-MAC increases the preamble length according to how much

power saving is desired. In our tests, we set the B-MAC

parameters to have a duty cycle of 135 ms and preamble

size of 371 bytes. We note that when a sender decides to

transmit immediately, according to the p parameter in PBBF,

the preamble size is set to the default 8 bytes for that particular

packet. We also note that the version of B-MAC we used

carrier senses the channel for 8 ms once every duty cycle.

If the channel is carrier sensed busy, then B-MAC extends

the time that it is awake for 32 ms. At the end of this 32 ms

interval, B-MAC carrier senses again and will sleep or extend

its listening for another 32 ms depending on if the channel is

idle or busy, respectively. For statistics collection, once the

sensor has run the experiment for the specified 30 s length, it

switches power save off for 10 s and reports its data.

The metrics that we measured are:

• Fraction of Time Not Sleeping: Obtaining fine-grained

energy measurements for the Motes requires special

equipment. Thus, we use a coarse-grained metric where

we track how much time a node spends with its radio

not in the sleep state over the course of an experiment.

Thus, the larger the fraction of time not sleeping, the

more energy is generally being consumed by the radio.

• Average Broadcast Latency: This is the average latency

from the time a packet is sent at the sender’s application

layer until the data begins transmission over the radio

(i.e., after the preamble and synchronization bytes are

transmitted). For this, we use the time stamping described

in [13]. Again, this is not as fine-grained of a metric as

we would like. However, this technique obviates the need

for time synchronization among the nodes which would

induce a large amount of complexity and overhead to our

implementation. We only compute the latency for nodes

that received a given broadcast.

• Unique Data Packets Received: The average fraction

of broadcasts sent by the source that are received by

listening nodes.

• Total Data Packets Received: This is a benchmark for

the receive overhead of the protocol. It is measured as the

average total broadcasts received divided by the number

of broadcasts sent by the source. Since sensors filter

duplicate broadcast packets (with respect to the source

and sequence number), the total data packets received is

greater than or equal to the unique data packets received.

• Total Data Packets Sent: For brevity, these results are

omitted. Please see [11] for details about this metric and

the corresponding results.

To test the effects of p, q, and r, we set their values to

0.0, 0.3, 0.7, and 1.0 and ran one experiment (with multiple

broadcasts) for each of the 64 possible combinations of these

three variables using these four values. The goal of this section

is to give some intuition of how the r parameter affects

these metrics. In a real system, an administrator would adjust

each of the three parameters to achieve desired tradeoffs. For

brevity, we only present the results in which the r parameter

is the independent variable. More results and discussion is

available in a tech report [11] (which also shows that our

implementation has the same trends observed in simulation

for energy consumption, latency, and reliability as a function

of the p and q parameters).

Figure 4 shows energy consumption. When p = 1, q = 0,
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we can see that the nodes use more energy due to the increase

in reliability that the increasing r is providing. The reliability

improvement with r is illustrated in Figure 5.

Figure 6 shows the overhead for receptions (the results

for transmission overhead follow similar trends [11]). These

results show that the overhead doubles when p = 1 and q = 1
as r goes from 0 to 1. This occurs because when p = 1,

each sensor will transmit each broadcast once when r = 0
and twice when r = 1. When p = 0, we see no effects on

the overhead, with respect to r, as expected. When p = 1
and q = 0, then the overhead is zero when r = 0 due to the

lack of reliability. The increasing reliability with r causes the

overhead to increase linearly.

Figure 7 shows the average latency. As expected, this metric

is primarily dominated by the p and q values instead of r. The

only exception is p = 1, q = 0, where the latency is very low

when r = 0 because the reliability is very low (Figure 5) and

only a few low-latency packets are received. When the r value

is larger, then more broadcasts are received according to the

original power save protocol. This increase both latency and

reliability as seen in Figure 7 and Figure 5.

VII. CONCLUSION

In previous work [1], we proposed PBBF, a lightweight

protocol that allows lower latency broadcast propagation in

power save networks in a energy efficient manner. With PBBF,

a user has fine-grained control over the energy consumption

for a broadcast to achieve a desired latency and reliability.

In this work, we have proposed a PBBF extension for

improved reliability at the cost of increased packet overhead.
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Additionally, we designed and implemented a PBBF architec-

ture in TinyOS [2]. Our evaluations show the energy consump-

tion, latency, reliability, and overhead tradeoffs possible using

PBBF on Mica2 [9] hardware.
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