Improving Power Save Protocols Using Carrier Sensing for Dynamic Advertisement Windows

Matthew J. Miller Nitin H. Vaidya University of Illinois at Urbana-Champaign

November 8, 2005

Lord of the Rings Protocol Design

- Rohan sends Gondor a call for help
 - Sentries on hills miles apart light beacon fires in succession
- Given that events are infrequent, when a sentry wakes up and sees no beacons should they:
 - A. Return to sleep immediately to save energy for other tasks
 - B. Remain awake for a fixed amount of time just in case an event occurs during that period

Is Power Save Research Dead?

Citations for PAMAS paper by Year (from Citeseer) Year of Publication of Citing Articles Number of Citations Year

- Unfortunately, a significant portion of sensor and ad hoc network research ignores the issue
 - Promiscuous listening
 - Frequent "Hello" messages
 - Latency of network-wide flooding

Is Power Save Research Important?

YES!!!

✓ It is a real world problem that affects wireless users every day

 ✓ Must be addressed for untethered ubiquitous wireless networks to become a reality

Won't Moore's Law Save Us?

From "Thick Clients for Personal Wireless Devices" by Thad Starner in *IEEE Computer*, January 2002

How to Save Energy at the Wireless Interface

Specs for Mica2 Mote Radio

Radio Mode	Power Consumption (mW)	
TX	81	
RX/Idle	30	
Sleep	0.003	

- Sleep as much as possible!!!
- Fundamental Question: When should a radio switch to sleep mode and for how long?
 - Many similarities in power save protocols since all are variations of these two design decisions

Proposed Technique #1 $T_1 \quad T_2$ LISTEN SLEEP Carrier Sense

for Wakeup Signal

- Decrease T₁ using physical layer carrier sensing (CS)
- If carrier is sensed busy, then stay on to receive packet
- Typically, CS time << packet transmission time
 □ E.g., 802.11 compliant hardware CS time ≤ 15 µs

Another Observation

- T₁ is fixed regardless of how many wakeup signals are received
- Ideally, nodes stay on just long enough to receive all wakeup signals sent by their neighbors

 \Box If no signals are for them \rightarrow return to sleep

- Using physical layer CS, we dynamically extend the listening period for wakeup signals
- While previous work has proposed dynamic listening periods for 802.11 power save, ours is the first for single radio devices in multihop networks

Related Work

Carrier Sensing

- B-MAC [Polastre04SenSys]: Make the packet preamble as large as the duty cycle
- WiseMAC [ElHoiydi04Algosensors]: Send the packet preamble during the receiver's next scheduled CS time
- □ We apply CS to synchronous protocols

Dynamic Listening Periods

- T-MAC [VanDam03SenSys]: Extends S-MAC to increase the listen time as data packets are received
- DPSM/IPSM [Jung02Infocom]: Extends 802.11 for dynamic ATIM windows in single-hop environments
- We use physical layer CS to work in multihop environments without inducing extra packet overhead

Background: IEEE 802.11 PSM

- Nodes are assumed to be synchronized
 - In our protocols, we assume that time synchronization is decoupled from 802.11 PSM
- Every beacon interval (BI), all nodes wake up for an ATIM window (AW)
- During the AW, nodes advertise any traffic that they have queued
- After the AW, nodes remain active if they expect to send or receive data based on advertisements; otherwise nodes return to sleep until the next BI

Applying Technique #1 to 802.11 PSM

Applying Technique #1 to 802.11 PSM

- Each beacon interval, nodes carrier sense the channel for T_{CS} time, where $T_{CS} << T_{AW}$
- If the channel is carrier sensed busy, nodes remain on for the remainder of the AW and follow the standard 802.11 PSM protocol
- If the channel is carrier sensed idle, nodes return to sleep without listening during the AW
- Node with data to send transmits a short "dummy" packet during T_{CS} to signal neighbors to remain on for AW

Observations

- When there are no packets to be advertised, nodes use significantly less energy
- Average latency is slightly longer
 - Packets that arrive during the AW are advertised in 802.11 PSM, but may not be with our technique
 - □ First packet cannot be sent until T_{CS} + T_{AW} after beginning of BI instead of just T_{AW}
- False positives may occur when nodes carrier sense the channel busy due to interference
- Can be adapted to other types of power save protocols (e.g., TDMA)

Background: RX Threshold vs. CS Threshold

- RX Threshold: received signal strength necessary for a packet to be correctly received
- CS Threshold: received signal strength to consider the channel busy
- We assume that usually CS range ≥ 2*RX range
 - If this is not true, our technique gracefully degrades to a fixed AW scheme

Applying Technique #2 to 802.11 PSM

Applying Technique #2 to 802.11 PSM: Listening

- At the beginning of each BI, listen for T_i time ($T_{CS} < T_i < T_{AW}$)
- When a packet is sent or received OR the channel is carrier sensed busy, extend listening time by T_i
- Set maximum on how long the listening time can be extended since the beginning of the BI

Applying Technique #2 to 802.11 PSM: Sending

- Node with packets to advertise
 - □ If a packet has been received above the RX Threshold within T_i time, all neighbors are assumed to be listening
 - Otherwise, the node conservatively assumes that its intended receiver(s) is sleeping and waits until the next beacon interval to advertise the packet
- *T_i* is set such that a sender can lose one MAC contention and its receiver will continue listening

Combining Technique #1 and Technique #2

- First CS period indicates whether an AW is necessary
- Second CS period indicates whether AW size should be fixed or dynamic according to Technique #2
 - If a sender repeatedly fails using a dynamic AW, this is a fallback to the original protocol

ns-2 Simulation Setup

- 50 nodes placed uniformly at random in 1000 m
 × 1000 m area
- 2 Mbps radio with 250 m range
- Five flows with source and destination selected uniformly at random

 \Box Low traffic = 1 kbps per flow

□ Higher traffic = 10 kbps per flow

Each data point averaged over 30 runs

Low Traffic Results

Beacon Interval (ms), AW = 20 ms

Latency Increase: (1) Additional CS periods, (2) Packets arriving during AW, (3) For Technique #2, postponed advertisements

Higher Traffic Results

Differences from Lower Traffic: (1) More ATIM windows have at least one packet, (2) More contention means more deferred ATIMs

Conclusion

From "Thick Clients for Personal Wireless Devices" by Thad Starner in *IEEE Computer*, January 2002

Thank You!!!

http://www.crhc.uiuc.edu/~mjmille2/publications/ mjmille2@crhc.uiuc.edu

Properties of Preamble Sampling

No synchronization necessary

- □ We require synchronization
- Larger preambles increase chance of collisions
 - We restrict CS signals to a time when data is not being transmitted
 - □ In our technique, interference is tolerable between CS signals
- Broadcasts require preamble size be as long as a BI → Exacerbates broadcast storm

We do not require extra overhead for broadcast

Only one sender can transmit to a receiver per BI
 We allow multiple senders for a receiver per BI

Is time synchronization a problem?

- Motes have been observed to drift 1 ms every 13 minutes [Stankovic01Darpa]
- The Flooding Time Synchronization Protocol [Maróti04SenSys] has achieved synchronization on the order of one microsecond
- Synchronization overhead can be piggybacked on other broadcasts (e.g., routing updates)
- GPS may be feasible for outdoor environments
- Chip scale atomic clocks being developed that will use 10-30 mW of power [NIST04]

Transition Costs Depend on Hardware [Polastre05IPSN/SPOTS]

Mote Radio	Wakeup	TX/RX/	Bitrate
Model	Time (ms)	Sleep (mW)	(kbps)
TR1000	0.020	36/12/	40
(1998-2001)		0.003	ASK
CC1000	2	42/29/	38.4
(2002-2004)		0.003	FSK
CC2420	0.580	35/38/	250
(2004-now)		0.003	O-QPSK

False Positive Results

Energy vs. False Positive Probability

Summary

- Less time spent checking and receiving wake-up signals and more time conserving energy
 - □ Application of physical layer CS to
 - synchronous power save protocol to reduce listening interval
 - Physical layer CS for dynamic listening interval for single radio devices in multihop networks