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Abstract— This document discusses some errors we have found
in the NP-complete proof for the Infocom 2005 paper, Delay
Efficient Sleep Scheduling in Wireless Sensor Networks [1].

I. BACKGROUND

This document is intended to supplement the corresponding

Infocom paper [1], so we will avoid redundantly including

their proof here and instead refer the reader to the original

document.

The goal in [1] is to find TDMA slot assignments for

sleeping nodes that minimize the maximum end-to-end latency

in the network. We will use the notation from their paper.

The schedule is cyclic and consists of k slots. Each node is

assigned one slot during which it will be awake to receive; it

will sleep during the remaining k−1 slots unless it is sending

data to a neighbor. The slot assignment function is denoted as

f . Thus, f : V → [0, . . . , k−1] for graph G = (V, E). If node

i wants to send to node j, then it has to wait until the slot

which j will be awake to receive. If i and j are assigned the

same receive slot, then, when i receives a packet, it must wait

an entire cycle before it can send to j (i.e., there can be no

more than one packet transmission per slot). Thus, the delay

between i and j, d(i, j), is:

d(i, j) =

{

k , if f(i) = f(j)

(f(j) − f(i)) mod k , otherwise
(1)

The delay, under slot assignment f , of a path from source

S to destination D, Pf (S, D), is simply the sum of the d(i, j)
values for each link along the path. The delay diameter of G

under slot assignment f , Df , is defined to be the maximum

delay between any two nodes in the network.

Df = max
i,j∈V

Pf (i, j) (2)

Given these definitions, the main problem that the authors

address is given in Definition 2 in their paper [1]:

Definition 2:Delay Efficient Sleep Scheduling

(DESS): Given a graph G = (V, E) and the number

of slots k, find an assignment function f : V →
[0 · · ·k − 1] that minimizes the delay diameter i.e.

f = argmin
f ′

{Df ′} (3)

II. ERRORS IN THE PROOF

In this section we discuss some errors that we found in the

proof from Section IV-A in [1] which result in the proof being

incorrect and not showing that the problem is NP-complete.1

A. Wrong Decision Problem

The first problem, which seems to affect the rest of the

proof, is that the decision problem for DESS is stated incor-

rectly. The statement given in [1] is quoted as follows:

Definition 5: DESS(G, k, f, ∆): Given a graph

G = (V, E), number of slots k, a positive number ∆
and a slot assignment function f : V → [0, · · ·k−1],
is Df ≤ ∆.

Notice that there is a critical difference in Definition 2,

which should be the basis for the decision problem, and

Definition 5. Namely, in Definition 2 the goal is to find f ,

whereas in Definition 5, f is given and one just needs to

verify that Df ≤ ∆. It is obvious that the question asked by

Definition 5 can be answered in polynomial time by running an

all-pairs shortest path algorithm and comparing ∆ to the path

with the largest cost. Thus, Definition 5 is not NP-complete.

The problem being addressed is:

INSTANCE: A graph G = (V, E) and number of slots k.

SOLUTION: A slot assignment function, f : V →
[0, . . . , k − 1].

MEASURE: The maximum delay diameter in the network,

Df .

Thus, the corresponding decision problem should have been:

Revised Definition 5: Given an instance of DESS(G, k, ∆),
does a slot assignment function, f : V → [0, · · ·k − 1],
exist such that Df ≤ ∆.

1We do not claim that the problem is not NP-complete. It may be. However,
the proof given in [1] does not show NP-completeness.



Throughout the remainder of this paper, we will use Revised

Definition 5 as the decision problem that should be used for

the proof.

B. Shows “if”, but not “only if”

In the proof, they consider a special case of the DESS

problem for convenience with k = 2 and ∆ = 4. They

reduce the known NP-complete problem 3-SAT to DESS.2

Their construction is supposed to show that a 3-SAT formula,

F , is satisfiable if and only if a slot assignment function, f ,

exists in DESS that results in Df ≤ 4.

The first part of the “if and only if” statement is true based

on their construction: if the instance of the 3-SAT formula is

satisfiable, then a slot assignment function, f , does exist in

DESS that results in Df ≤ 4. However, the second part of

the statement is not necessarily true: if a slot assignment, f ,

exists in DESS that results in Df ≤ 4, then the corresponding

instance of 3-SAT is not necessarily satisfiable.

As a simple proof by contradiction, consider Figure 2

from [1]. We introduce slot assignment function f ′′, which

uses the same algorithm in rules 1–3 of their proposed f ′

function [1], but changes the fourth rule to be:

4) ∀i ∈ [1, · · ·m] : f ′′(Xi1) = 0 and f ′′(Xi2) = 0

Using slot assignment function f ′′, DESS will always have

Df ≤ 4 regardless of whether or not 3-SAT is satisfiable.

Thus, by showing this one contradictory slot assignment

function, we have shown that the existence of a slot assignment

function that results in Df ≤ 4 does not necessarily imply that

the corresponding 3-SAT instance is satisfiable.

C. Literal and Compliment in 3-SAT Could Be Assigned the

Same Value

Any reduction from 3-SAT must assure that a literal and

its compliment cannot be assigned the same value since this

is obviously impossible. Unfortunately, their proof places no

such restriction on a slot assignment function that results in

Df ≤ 4. This is demonstrated by the slot assignment function

f ′′ proposed in the previous section. The f ′′ assignment

2We ignore that they include a “special case” of f , f ′, in their proof, since
this is based on an incorrect statement of the decision problem as discussed
previously.

function will result in Df ≤ 4 and result in a literal, X , and

its compliment, X , both being set to true, an impossibility.

III. SKETCHES FOR A CORRECT PROOF BASED ON 3-SAT

If the DESS problem is indeed NP-complete, we believe

that the authors need to incorporate the following elements in

their current construction to achieve a correct proof based on

their reduction from 3-SAT:

A. Clause nodes must all have the same slot assignment

In the current construction, nothing enforces that the channel

assignment function, f , set all clause nodes to the same slot.

Thus, the idea of having a root node, S, is more difficult to

use if each clause can be assigned an arbitrary value for a

function, f , that results in Df ≤ ∆. Thus, the construction

may need to require that if all clause nodes are not assigned

to the same slot in some function, f , then Df > ∆.

B. Literal and compliment nodes must have different slot

assignments

As shown with our slot assignment function, f ′′, the current

construction does not enforce that a literal node and its

complement node must be assigned to different slots if Df ≤
∆. Thus, the construction must require that a slot assignment

function that assigns a literal node and its compliment node

to the same slot results in Df > ∆.

C. Every clause node must connect to at least one variable

with a different slot assignment

This is where the essence of the 3-SAT problem is used.

The construction must assure that if every clause does not

connect to at least one variable assigned to a different slot,

then Df > ∆. The current construction seems to attempt to

address some aspects of this requirement.
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