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Abstract

Designing energy-efficient protocols for ad hoc networks is important since there has been little improvement in the
amount of energy stored on these devices. Previous work considers leaving a subset of nodes in a state with high energy
consumption and low latency while the rest of the network remains in a power save state (i.e., low energy consumption and
high latency). Our work is the first to generalize this concept for ad hoc networks by proposing the use of k levels of power
save, each of which presents a different energy-latency tradeoff (i.e., a lower latency state requires more energy consump-
tion). Thus, previous work only considered the case where k = 1 or kK = 2. In this paper, we propose a link layer protocol to
provide k levels of power save and a routing protocol to use this link layer effectively. Via simulation, we show that our
protocols are able to maintain a desired end-to-end latency with a relatively low energy consumption.

© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Reducing energy consumption is important for
wireless devices since they may need to operate for
long periods on battery power. Unfortunately, the
energy density of batteries has shown little improve-
ment recently when compared to other performance
metrics [5] (e.g., memory, disk storage, computation
speed, and channel bitrate). This trend is further
exacerbated as devices become smaller since there
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E-mail addresses: matt@matthewjmiller.net (M.J. Miller),
nhv@uiuc.edu (N.H. Vaidya).

is less physical area available for a battery. Thus,
given that the amount of energy stored is increasing
rather slowly, it is beneficial to consider how to
reduce the rate at which energy is consumed. This
necessitates the need for emergy-efficient protocols
to balance how much energy the hardware consumes
with acceptable performance for applications.

A complete solution to energy efficiency involves
many areas of research, such as hardware, operating
systems, networking, and applications [6]. Our work
focuses on the networking component since it has
been shown to be a significant power sink in devices
with small or no displays [7] (e.g., sensors, cell
phones).

Most work in this realm has been fairly restricted
to homogeneous protocols in the sense that all
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Table 1

Energy consumption and latency of bimodal power save states
State Energy consumption Latency
Power save Low High
No power save (always on) High Low

nodes in a network use the same power save proto-
col (e.g., power save is either turned on or off for
all nodes). Generally, turning power save on will
consume less energy, but degrade the latency and
throughput in the network when compared to
switching it off. However, some work considers the
scenario where a small subset of nodes turns power
save off while the rest of the nodes remain in the
power save on state [1-4]. How this subset of nodes
is chosen differentiates these protocols and is dis-
cussed in Section 2.

One common characteristic of all such ad hoc
network power save protocols is that they are bimo-
dal. That is all nodes are in one of the two states
shown in Table 1. The contribution of this work is
to generalize the idea of heterogeneous power save
protocols to support multiple power save states. In
our work, each node uses one of k levels of power
save at any given time (thus, previous work only
focused on the k=1 and k=2 cases). While the
idea of multilevel power save has been proposed
for single hop networks with a base station [8], we
are unaware of any comparable work for ad hoc
networks. Obviously, these scenarios differ greatly
since the latter requires distributed protocols as
opposed to the centralized approach of the former.
Additionally, the approach in [8] uses a separate
out-of-band channel whereas our work only
requires one channel.

In Section 2, we survey related work. In Section 3
we describe our design in two parts: the link layer
protocol (Section 3.1) provides multilevel power
save and the routing protocol (Section 3.2) uses this
link layer effectively. We evaluate our protocol via
simulation in Section 4. Section 5 proposes an
extension to our scheme and Section 6 concludes
the paper.

2. Related work

We begin by describing IEEE 802.11 Power Save
Mode (PSM) [9]. This protocol serves as the founda-
tion for our protocol and much of the related work.
It has a simple design and the most complete speci-
fication of any open standard power save protocol.

Nodes are assumed to be synchronized and awake
at the beginning of each beacon interval (BI). After
waking up, each node stays on for a period of time
called the Ad hoc Traffic Indication Message
(ATIM) window. During the ATIM window, since
all nodes are guaranteed to be listening, packets that
have been queued since the previous beacon interval
are advertised via ATIM packets. When a node has
a packet to advertise, it sends an ATIM packet to
the intended receiver during the ATIM window. In
response to receiving an ATIM packet, the destina-
tion will respond with an ATIM-ACK packet
(unless the ATIM specified a broadcast destination
address). When this ATIM handshake has occurred,
both nodes will remain on after the ATIM window
and try to send their advertised data packets before
the next beacon interval. If a node remains on after
the ATIM window, it must keep its radio on until
the next beacon interval. If a node does not send
or receive an ATIM, it will enter sleep mode at
the end of the ATIM window until the next beacon
interval. This process is illustrated in Fig. 1. The
dotted arrows indicate events that cause other
events to occur. Node A sends a data packet to B,
while C, not receiving any ATIM packets, returns
to sleep for the rest of the beacon interval.

Based on the 802.11 PSM description, we assume
that there is some time synchronization mechanism
that is external to our protocol. If available and
operating in the proper environment (e.g., out-
doors), GPS could be used for this purpose. For a
survey of other synchronization protocols, see [10].
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Fig. 1. IEEE 802.11 Power Save Mode (PSM) [9].
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Recent synchronization protocols for sensors [11]
demonstrate precision on the order of a microsecond.

The protocol in [1] works with on-demand rout-
ing and uses 802.11’s PSM when a node is not
engaged in sending, receiving, or forwarding data.
When a node is communicating, soft timers are used
to transition the node to an idle listening mode that
reduces latency and preserves throughput better
than using only 802.11°s power save. However, the
timers do not adjust to the traffic rate, so if traffic
is not frequent enough to refresh the timers, then
the benefits of the protocol are lost. TITAN [2]
extends the work from [1]. In TITAN, route
requests are delayed by sleeping nodes to allow
the route discovery procedure to favor nodes that
are already in the idle listening state. This helps
reduce the overall energy consumption in the net-
work. Both of these protocols only consider two
power save levels whereas our work is designed
for the more general scenario of k power save levels.

Another strategy is for nodes to remain awake
based on their local topology and/or traffic [3,4].
GAF [4] assumes the nodes have some location
information and form virtual grids. The size of the
grids is chosen such that the nodes in two adjacent
grids are equivalent with respect to forwarding
packets. Then, within each grid, a discovery proto-
col tries to ensure that most of the time one node
remains active while the rest enter a low-power
state. As mobility increases, the discovery process
should be more frequent. SPAN [3] allows all nodes
to enter power save mode except for elected coordi-
nators. At the MAC layer, nodes periodically
exchange messages that contain its set of neighbors,
coordinators, and whether it is a coordinator.
Nodes will then elect themselves coordinators if
their neighbors would get better connectivity by it
doing so. A random delay is introduced before
nodes declare themselves coordinators. This delay
varies inversely with the amount of connectivity that
would be achieved and inversely with the amount of
energy remaining at the node. For fairness, the
coordinators will periodically withdraw. These pro-
tocols only consider two power save levels.

As we mentioned in Section 1, all work men-
tioned above only places the nodes in one of two
power save states. By contrast, our work places
nodes in one of k power save states. In [8], a similar
idea is explored in the context of single hop net-
works with a base station. Here, devices have a pag-
ing interface that is used by the base station to wake
up certain nodes when it has data to send. The

devices can be in any one of several sleep states.
Each sleep state uses less power in steady state,
but requires more delay and power when transition-
ing to the fully awake state. A device will remain in
a power save state at least long enough to get a posi-
tive energy gain before transitioning to the next
lower power state. The base station tracks this cycle
for each device and when it has data to send, it waits
as long as possible before waking the device and
transmitting subject to QoS requirements. When
the base station wishes to wake a device up, it pages
all devices in that current sleep state. The non-target
devices in the paged sleep state will then start the
sleep cycle again once they determine that the data
is not for them. This allows the size of the paging
message to be on the order of the number of sleep
states instead of the number of nodes.

3. Protocol design

Our goal is to design a routing protocol for net-
works that use k power save levels. Each level of
power save provides a different energy-latency
tradeoff (i.e., a level with a lower latency requires
more energy). As mentioned earlier, this paradigm
is a generalization of the paradigm in [1-4] (dis-
cussed in Section 2) where only two levels of power
save are assumed (the levels shown in Table 1). By
using multiple power save levels, we allow applica-
tions (e.g., sensor reports) to achieve an acceptable
latency while reducing energy consumption in the
network.

The idea of using multilevel design to achieve
acceptable tradeoffs is prevalent in computer science
(see [12] and references therein). For example, in
computer architecture, accessing cache is much fas-
ter than main memory. However, main memory is
cheaper in terms of cost per byte and is capable of
storing much more data.

3.1. Link layer protocol

First, we need to specify how the link layer power
save protocols can be designed to provide k levels
of power save, each with different energy—latency
characteristics. Many power save protocols can be
adapted to achieve this as discussed later in this
section. We use 802.11 PSM [9] as the underlying
power save protocol, which is described in detail
in Section 2.

The 802.11 PSM protocol can be adapted to
provide k levels of power save by changing how
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frequently a node wakes up to listen during an
ATIM window based on its current power save
level. We denote these k& power save levels as
PSy,...,PSi_;. Without loss of generality, we
assume that PS, corresponds to the ‘“‘always on”
state and PS;_; uses the least amount of energy,
but has the highest latency. In PS,, the nodes never
sleep and, thus, can receive a packet with the lowest
latency, but also consume the most energy. The next
level, PS; corresponds to the standard implementa-
tion of 802.11 PSM. That is, when a node is not
sending or receiving any packets, it wakes up for
every ATIM window and sleeps for the remainder
of the beacon interval. In PS,, nodes wake up only
every other ATIM window. This allows them to
save about twice as much energy as the nodes in
level PS; while also doubling the latency to send
or receive a packet.

Because we want to ensure that every node has its

ATIM overlap with every other node periodically,
we increase the sleep time for each level by a factor
of 2. This is a simple method to guarantee overlap,
but more complicated schedules [13] may work as
well. Thus, to calculate the beacon interval for level
PS;, we have:
BI; = 27" X Bly,, When i> 0, (1)
where BI; is the beacon interval for the ith power
save level and Bl 1s the base beacon interval
specified for the system (i.e., Bl = Bly,se).

Fig. 2 illustrates the multilevel link layer protocol
with k£ =4. In this figure, AW corresponds to the
ATIM window size and we show only the case in
which no traffic is being sent. The beacon intervals
of the four power save levels are: Bly =0, BI, = t; —
to, B, =1, — ty, and Bl; = t4 — ty. The base interval
is t — 1 (i.e., BIbase =t — lo).

The largest possible beacon interval, BI;_;,
serves as the reference point for all of the nodes to
ensure that they remain in phase. That is, the first
ATIM window for which a node awakes in a cycle
must always occur at the beginning of a reference
point beacon interval (that is spaced BI,_; time
units after the previous reference point). The refer-
ence points in Fig. 2 are at 75 and 74. Additionally,
the reference point serve as an ATIM interval where
broadcast packets can be advertised (discussed in
more detail in Section 3.3.1).

Since we assume that the nodes are synchronized,
each node is initialized with the time of the previous
reference point. Alternatively, if a node is added to
the network later, it can learn the time of the previ-
ous reference point from older nodes in the
network, along with the ATIM window size, Bl
and the number of power levels the network is using
via 802.11 management frames. This guarantees
that for any two nodes, one with PS; and the other
with power level PS; where i <j, the node with PS;
will be awake during every ATIM interval that the
node with PS; is awake since BI, is divisible by BI,.

Each node keeps track of its neighbors’ power
save state as follows. On every data and ACK
packet a node sends, it attaches its current power
save level. When a sender wants to advertise a
packet to a neighbor for which it knows the power
save state, it will wake up in that neighbor’s sched-
uled ATIM window and advertise the packet. The
neighbor’s next scheduled ATIM window can be
computed since its power save state is known. We
do not test the consistency of a node’s power save
table. However, our protocol could use a scheme
similar to the one in [1] whereby the first time a
packet transmission fails, a node sets the intended
receiver’s power save state to PS,_;. Recall that
PS)_1 has the longest beacon interval and all nodes,
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Fig. 2. Multilevel power save with 802.11 PSM [9].
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no matter what power state, are guaranteed to wake
up every BI,_; time units. Thus, if the neighbor still
exists near the node, communication should be pos-
sible during this beacon interval. If a transmission
fails again for the receiver using PS;_1, then the link
is considered dead and reported to upper layers.

This is just one example of how a power save
protocol can be modified to achieve multiple levels
with different energy—latency tradeoffs. Other exam-
ples include adjusting the time between listening
periods in protocols such as STEM [14] and Wise-
MAC [15]. Nodes using a longer sleeping time
between listening periods would save more energy,
but require a longer latency to be awakened by
neighbors.

3.2. Routing protocol description

In Section 3.1, we described how to provide
multilevel power save. In this section, we describe
a routing protocol to efficiently use multilevel power
save. If energy consumption is the only concern, the
optimal adaptive sleeping strategy is simply for
every node to select PSj_; as their power save state.
However, this results in large delays due to the
power save protocol that may be unacceptable for
many applications.

Thus, our protocol works by taking an applica-
tion-defined latency bound and trying to find a
route to achieve the bound while attempting to min-
imize the increase in energy consumption. We focus
on only the latency induced by the power save
protocol because this delay tends to be large (e.g.,
hundreds of milliseconds or even seconds per hop)
relative to contention and queuing delay in non-
congested networks. In highly congested networks,
power save protocols would most likely not be used.
A vast body of QoS research deals with congestion
and queuing delay which we view as orthogonal and
complementary to our work.

If we are given a set of m flows to route
(F1,F>,...,F,) and a desired latency for each flow
(Ly,Lo,...,L,,), finding routes that minimize the
overall energy consumption increase for the flows
is NP-complete. A proof of this is presented in
Appendix A. In this work, therefore, we consider
heuristics to address the problem.

We modify DSR (Dynamic Source Routing) [16]
to obtain our routing protocol. We now give a brief
overview of the salient aspects of DSR. When a
source, S, wants to send packets to a destination,

D, it must first discover a route. To do this, S broad-
casts a route request packet (RREQ) that is flooded
throughout the network specifying that it is trying
to find a route to D. Each node, other than D, that
receives S’s RREQ adds itself to a node list in the
packet and rebroadcasts the RREQ (assuming that
the TTL of the RREQ is valid).! Each RREQ is
rebroadcast only once by an intermediate node.
So, if multiple copies of the same RREQ are
received by a node, as determined by a unique
RREQ sequence number, the node forwards only
the first one received. If the RREQ reaches D, it gen-
erates a route reply (RREP) packet and sends it to
the source.”> The RREP packet is generated by
reversing the node list in the RREQ and sending
the RREP along the path specified by the node list.
The entire node list is in the payload of the RREP
packet and is also used for source routing the packet
to S. A node that receives a source-routed packet
will only forward it if the node’s ID is next on this
node list. To do so, it transmits the packet to the
next node ID specified on the list. In this manner,
the RREP makes its way back to S. At this point,
S extracts the node list from the payload of the
RREP and uses it as the source route to forward
data packets. That is, every data packet that .S sends
will have the node list appended to the routing
header.

We modify DSR as follows. The RREQ sender
adds its desired latency, L, for the flow to the RREQ
packet. When forwarding the RREQ, each node will
append its current power save state in addition to its
node ID. When D receives its first RREQ from S, it
will set a timer for some specified time, Tdelay-3 D
will not send a RREP until this timer expires. While
the timer is running, D will collect all RREQs with
the same sequence number that it receives from S.

! Non-destination nodes replying to RREQs using cached
routes is one of many extensions that has been proposed for
DSR. We do not use cached replies in our work.

2 Another option in DSR is whether the destination replies to
every RREQ it receives or just the first one. In our protocol, the
RREP procedure is modified, but the destination will send only
one RREP per RREQ.

3 Another option is that a node replies after receiving some
number, say x, RREQs even if the Tge,, timer has not yet
expired. For example, if x = 1, then a node would just calculate
the power save state changes required for the path on the first
RREQ that it receives and use that path (and disregard all
subsequent RREQs for that route discovery). If x =2, the node
would consider only the first two RREQs that it receives and
cancel the Tgeay timer if it has not yet expired.



M.J. Miller, N.H. Vaidya | Ad Hoc Networks 6 (2008) 210-225 215

FIND-ROUTE(R, L)
1 sk
* Find route on which to send the RREP
* given a list, R, of received RREQs
* and latency threshold, L

isFirst — true

2

3

4

5 k)
6

7

8 for each r in R
9

do cost <+ ENERGY-INCREASE(r, L)

10 if isFirst or cost < min
11 then min = cost

12 minRREQ =r
13 isFirst < false
14

15  /* Set requested power levels for chosen path */
16 ARRAY-CoPY(psLevels[minRREQ),
17 newPsLevels[minRREQ))

19  /* Reply using the path from minRREQ */
20 SEND-RREP(minRREQ)

Fig. 3. Algorithm for determining which path to use from
collected RREQs.

At the end of this T4,y time, D will evaluate all the
paths that it has received from these RREQs and
send an RREP along the “best” path. Next, we
specify the routing metrics that are used to deter-
mine which path to use.

The goal of our routing metric is to find the path
that can achieve the desired latency, L, (specified in
the RREQ) while increasing the energy consump-
tion in the network the least. To do this, we consider
paths that have been collected during the RREQ
reception phase. For each path, we find the node
on the path whose energy consumption will increase
the least by moving to the next higher energy state
(and, hence, lowering the latency for that hop).
We continue iterating in this manner until the path’s
end-to-end power save-induced latency is less than
L or all nodes are in the highest energy state. At this
point, we store the total energy increase for the path
that was necessary for the iteration to terminate.
Once this has been done for all the paths, we send
the RREP on the path that requires the smallest
total energy consumption increase. If two or more
paths are tied for the minimum cost, then our pro-

ENERGY-INCREASE(r, L)

1 [k
2 * Find the minimum energy consumption increase
3 * required for the path in a RREP, r, to achieve
4 * a wake-up latency less than or equal to L.
5 *****/
6
7 /*****
8  * psLevels[r] contains the current power save level
9 * of each node along the path in 7.
10 * psLevels|r] is an array with an element for
11 * each node on the path.
13
14 /* pathLen]r] is the length of the path in r */
15
16 ARRAY-COPY(newPsLevels|r|, psLevels|r])
17 energyCost <+ 0
19 * We assume that PATH-LATENCY < L
20  * when newPsLevels[r][i] = 0 for all ¢ on the path
22  while PATH-LATENCY(7) > L
23 do isFirst < true
24 for i — 1 to pathLen]|r]
25 do cost < ENERGY-DIFF(newPsLevels|r][i],
26 (newPsLevels[r][i] — 1))
27 if cost # 0 and (isFirst or cost < min)
28 then min = cost
29 minlnder =1
30 isFirst « false
31 energyCost < energyCost + min
32 newPsLevels[r][minlndex] —
33 newPsLevels[r|[minIndex] — 1

34 return energyCost

Fig. 4. Algorithm for computing cost of a path to reach latency
threshold L.

tocol prefers routes with the lowest hop count.*
Our algorithm is shown in Figs. 3-5.

* We note that other metrics such expected number of
transmissions or packet loss [17] could be used instead.
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ENERGY-DIFF(old Level, new Level)
2 * Find the difference in energy consumption for
3 * gwitching from the lower energy oldLevel

4 * to the higher energy new Level

5 *****/

6

8 * atimSize is a parameter specified elsewhere.
9

* It is the size of the ATIM window in units of time.

10 sy

11

12 if oldLevel = 0 or newLevel > oldLevel
13 then return 0

14

atimSize
beaconIntervalSize[oldLevel]

16 if newLevel > 0

15 oldEnergy «—

atimSize
beaconIntervalSize[new Level]

17 then newEnergy «—

18 else newEnergy «— 1

19 return (newEnergy — oldEnergy)

Fig. 5. Algorithm for computing the energy consumption differ-
ence between two power save levels.

Each node receiving the RREP will check the
requested power save level set for it by the destina-
tion. If the requested power save level is a higher
energy level than its current level, then the node
switches to the new power save level. Otherwise, it
will remain in its current power save state since it
is sufficient to maintain the desired latency of the
path.

The Finp-Route function in Fig. 3 finds the
route to use based on R, the set of RREQs that have
been collected. For each RREQ, FIND-RoOUTE calls
ENERGY-INCREASE (discussed below) to calculate
the cost of using the RREQ’s route in terms of
how much the energy consumption of the path must
be increased to reach the latency threshold, L. At
the end of the for loop, the least costly path is found
and the power save states are set to the new power
levels necessary to achieve the latency threshold
(newPsLevels is a global variable set in ENERGY-
INcrEASE). With these updated power levels, the
RREP is constructed and sent along the chosen path
via the call to SEND-RREP.

The ENERGY-INCREASE function in Fig. 4 com-
putes the minimum increase in energy consumption

necessary for the path in a RREQ, r, to achieve the
desired latency, L. First, the function makes a copy
of the power save levels of the nodes in r’s path
(psLevels[r]) since our algorithm needs to change
this state. The energyCost variable keeps a running
total of the increase in energy consumption required
for r’s path to reach L. The while loop on line 22 will
continue until the latency of the path is less than L
(we assume that this will always terminate in the
pseudocode). Each iteration of the while loop will
calculate the difference in energy consumption that
would result for each node in 7’s path if its current
power save state was moved to the next lower
latency power save state (i.e., moving from PS; to
PS;_1). This calculation is done via the call to
ENERGY-DIFF, which is discussed below. Once the
for loop on line 24 has terminated, we have identi-
fied the node on r’s path who can transition to a
lower latency power save state with the smallest
increase in energy consumption. At this point, we
transition to the lower latency power save state
(using the newPsLevels variable) and increment
energyCost by the energy consumption increase
required. When the path latency (calculated by the
PATH-LATENCY function call) is less than L, the while
loop terminates and returns energyCost.

The PATH-LATENCY function in Fig. 4 (line 22)
can be computed in terms of worst-case latency,
average-case latency, or some other metric. We
assume that a node j is using the k-th power level.
Thus, PS;, denotes its power save level and By, is
the length of its beacon interval. Thus, for a path
of n nodes, and the worst-case latency metric, our
protocol considers the route for use if:

Blk1+B]k2+"'+B]kn<L. (2)

The ENERGY-DIFF function in Fig. 5 computes an en-
ergy cost for transitioning from one power save state
to a lower latency power save state. We compute the
energy consumption of a power save state as the
ATIM window size (atimSize, whose value is set
elsewhere) divided by the power save state’s beacon
interval size (i.e., BI,). The beaconlntervalSize vari-
able is an array indexed by the beacon interval sizes
for each power save state. Note that this energy
consumption calculation considers only the energy
consumption when nodes are not awake after the
ATIM window. When nodes are awake following
the ATIM window, the energy consumption used in
the subsequent beacon interval is the same regardless
of the power save state. As an example, let atim-
Size =20 ms, and BI; = 200 ms and B/;,_; = 100 ms.
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In this case, ENERGY-DIFF(PS;, PS;_1) will return

20 20 _
100 200 0.1.

Though we do not test this in our simulations,
each node must set a soft timer for each flow for
which it forwards packets so that it can revert to
lower energy states whenever that flow ceases or
the route fails. Because the inter-arrival time for
the packets on a flow is highly application depen-
dent, we propose letting the application specify this
timeout value and piggybacking it on data packets
sent by the flow. Whenever a flow times out or
explicitly indicates that it will no longer use the
route, the node transitions into the lowest energy
power save state that is still acceptable to the flows
which continue to use that node on their route, as
indicated by the power save levels specified for the
node in RREPs that it has received.

3.3. Design discussion

3.3.1. Wake-up schedules

As described in Section 3.1, we use a simple link
layer protocol to provide multiple levels of power
save. Basically, the beacon interval either increases
by a factor of 2 or decreases by half depending on
whether the node is moving to a lower or higher
energy state, respectively. An alternative is to use
more complex wake-up schemes that provide over-
lap either deterministically or probabilistically.

In general, probabilistic protocols (e.g., [18]) are
not appropriate in our design since they essentially
add more uncertainty to an already unreliable chan-
nel. Additionally, these protocols make even soft
real-time constraints more difficult to obtain. Thus,
we do not consider probabilistic approaches for our
protocol.

By contrast, protocols that give deterministic
overlap in an asynchronous manner (e.g., [13]) do
allow soft real-time latency bounds. The basic idea
is that each node wakes up according to some
pattern that is guaranteed to overlap within some
bound with every other node even though they
may be unsynchronized. The major advantage of
this approach is that it makes synchronization less
necessary. However, it can greatly increase the pro-
tocol complexity since the wake-up schedules have
to be chosen appropriately and nodes still must
probe to find out when the overlap occurs since they
have no prior knowledge. Additionally, broadcast is
a problem since there is no single time where a node
is guaranteed to have all of its neighbors listening.
We do not use a deterministic asynchronous proto-

col because we are not concerned with synchroniza-
tion and we need a relatively reliable and low
overhead broadcast mechanism for the route dis-
covery in our work. This also frees us from the
added complexity such a scheme would add to focus
on the major idea of routing with multiple power
save levels.

Another option is to have one, long “master”
beacon interval in which everyone is awake (i.e.,
BI;_; in our protocol). Then, each node chooses
its own beacon interval independently based on
the RREPs it receives and lets each communicating
neighbor know the next time it is scheduled to
awake. Nodes then keep track of the next wake-up
time for each node with which they are communi-
cating. This frees the nodes from the need to use
specified discrete intervals and allows them to use
any interval up to BI;_;. Broadcast is still possible,
as in our scheme, where broadcasts are sent only
during the “master”, or BI,_;, interval. The disad-
vantage of this approach is that it requires the nodes
to keep more per flow state. Also, it is more suscep-
tible to nodes returning to sleep too early since
nodes waking up experience contention from data
packets, not just ATIM packets as in our scheme.
Data packets tend to be significantly larger than
ATIM packets. In future work, one could more
fully explore this idea to see under what conditions
the early sleep problem makes this protocol worse
than our current version.

3.3.2. Soft timers

As mentioned in Section 3.2, we use soft timers
per flow passing through a node to determine when
it can revert to a lower energy state. We believe that
this is acceptable since, in many environments, a
node will have only a few flows passing through it.
Of course, a node can always choose not to handle
additional flows if its per flow state becomes
excessive.

An alternative to this design decision is to require
a sender to explicitly “delete” a flow by sending a
packet along the path when it is finished. We feel
that this method would be unacceptable in multihop
wireless network settings due to the inherent under-
lying reliability of the channel and devices. Because
links and flows can fail unexpectedly, a node would
permanently keep state for dead flows for which the
flow was not deleted. Eventually, this could exhaust
the node’s memory resources. Thus, overall, we feel
that the per flow state required to maintains soft
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timers for this purpose is best for the environment
we are considering.

3.3.3. Routing techniques

We choose to use DSR [16], a source routing
protocol, in our work as described in Section 3.1.
An alternative would be to use a distance vector
approach, like AODV [19]. The disadvantage of
using AODYV (or another distance vector protocol)
is that nodes learn only aggregate information
about the path during routing as opposed to DSR
which provides per node information. In the algo-
rithms discussed in Section 3.1, we need per node
information. In this aspect, DSR provides a super-
set of the information that AODV does. Because
our algorithms do not work with the information
from AODYV, we use DSR in our work.

Another choice would be to use link state routing
[20], such as OLSR [21]. Nodes could flood the net-
work whenever their power save level changes or a
link breaks. The obvious disadvantage of this
approach is the high overhead to flood the network
if power save states are changing relatively frequently.
Also, as shown if Appendix A, even if the entire
topology is accurately known, it is still NP-complete
to find the minimal energy consumption increase
required for a desired latency. Thus, the advantage
of knowing the entire topology, as opposed DSR
which learns just a few paths, is not easily exploited.
At the very least, we could find the k shortest paths
[22], given the entire topology, and run the algorithms
from Section 3.1 on each of these paths. In future
work, it would be interesting to test a link state rout-
ing protocol versus our DSR implementation to
determine which performs better under different met-
ric change frequencies and network sizes.

4. Simulation results

To evaluate our protocol, we simulated it using
ns-2 [23]. We test the following schemes, where the
bold text is the name we use to refer to the scheme
and the italicized text indicates the (Routing, MAC)
tuple used:

e Always On [9,16] (DSR, 802.11): This is the IEEE
802.11 protocol with no power save. It is the
default, unmodified MAC protocol in ns-2.
Because nodes never sleep, ALWAYS ON uses
the most energy, but has the lowest latency. In
our simulations, this protocol is independent of
the x-axis; it is included for reference.

¢ 802.11 PSM [9,16] (DSR, 802.11 PSM): This is
the standard TEEE 802.11 protocol with power
save enabled. 802.11 PSM is described in Section
2. The beacon interval for this protocol is set to
the longest beacon interval for a given k value.

e CS-ATIM (DSR, CS-ATIM): This is 802.11
PSM with our proposed carrier sensing modifica-
tion described in [24]. Briefly, CS-ATIM allows
the ATIM window to be dynamically extended
as long as advertisements are being sent. Thus,
it is more energy efficient than 802.11 PSM since
nodes can return to sleep after the ATIM window
much sooner when there are a small number of
advertisements. The beacon interval for this pro-
tocol is set to the longest beacon interval for a
given k value.

o Multilevel PSM (Multilevel DSR, Multilevel
802.11 PSM): This is our proposed multilevel
power save protocol described in Section 3 using
802.11 PSM.

o Multilevel CS-ATIM (Multilevel DSR, Multilevel
CS-ATIM): This is our proposed multilevel
power save protocol described in Section 3 using
the CS-ATIM protocol that we proposed in [24].
See the CS-ATIM bullet point above for a brief
description of the protocol.

We use 2 Mbps radios that have a 250 m range.
Each data point is averaged over 30 tests. The
ATIM window is 20 ms and the base beacon inter-
val, Bl,s., is 100 ms. Our topologies are generated
by placing 50 nodes uniformly at random in a
1000 m x 1000 m area. Each scenario has five flows
among randomly chosen source and destination
pairs. Each flow sends at a rate of one 512-byte
packet per second using CBR traffic. We set Tyejay,
the time that a destination waits to collect RREQs
to be 500 ms. In our experiments, we set L to be
the same value for all flows in the network and do
not test the more general case where each flow could
select its own L value.

Since our protocols are designed to only achieve
soft real-time bounds on latency, it is important to
consider the standard deviation of our latency
results. This gives us an indication of how well the
protocols are able to stay within the bounds over
multiple runs. To avoid cluttering our figures with
standard deviation bars, we provide the numerical
values in Table 2 (we will refer to this table in our
discussion of the results). In this table, we give the
standard deviation for each protocol in each latency
figure as a percentage of the mean for the corre-
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Table 2
Standard deviation as percentage of mean for latency figures
(Average | Maximum)

Fig. 7 Fig. 9 Fig. 12
Always on 29.06 29.06 2599 2599 29.00 29.00
802.11 PSM 33.77 52.54 2939 2939 56.94 56.94
Multilevel PSM 20.03 22.75 2633 29.04 2346 53.28
Multilevel CS- 17.61 19.43 2486 35.56 22.04 61.39
ATIM
CS-ATIM 36.06 52.01 2694 2694 4372 4372

sponding data point. We use the percentage since
the mean values can vary significantly which makes
the absolute values of the standard deviations diffi-
cult to compare. We compute the standard devia-
tion averaged over all data points for the protocol
as well as the maximum standard deviation of any
one data point on a protocol’s curve. Additionally,
we have plotted the standard deviation bars for the
latency of the multilevel protocols to show their
deviation relative to the desired latency bound.

Fig. 6 shows energy consumption of the proto-
cols when L =300 ms. The horizontal axis is k,
the maximum number of power save levels. Since
Thase = 100 ms, k = 2 corresponds to the traditional
802.11 protocol where a node can either be on or
using a power save protocol with a beacon interval
of 100 ms. From the figure, we see that all the power
save protocols use significantly less energy than the
Always On protocol.

We see that the multilevel PSM protocol uses
about 33-50% more energy than the traditional
PSM protocol. However, this increase in energy
comes with a huge reduction in latency as shown
in Fig. 7. In this figure, we measure only the latency
for packets that are sent after the source has
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Fig. 7. Effects of the number of power save levels on latency.

received the RREP. The source queues packets
while waiting for the RREP, which makes their
delay rather large and can skew the average end-
to-end delay of the rest of the packets.

The multilevel protocols achieve a delay of
around 140-180 ms, which is well within the
L =300 ms bound that was given. By contrast, the
non-multilevel protocols have a latency of just over
300 ms when k=2 and increase to over 3000 ms
when k=5. For k=3 and k =4, we notice that
the average latency is approximately double that
of using the next lower latency power save state
(i.e., k=23 latency is about double that of k=2
and k=4 is twice as much as k= 3). However,
when k£ = 5, the latency more than doubles over that
of k = 4. The reason for this is that ATIM window
contention causes significant delays. Since the
ATIM window size is static regardless of k& and
the traffic rate remains the same, more packets need
to be advertised in the ATIM window when k = 5 as
opposed to, say, k =2. The increased contention
reaches a point where some nodes are unable to
send an ATIM when they first try and must wait
another beacon interval. This greatly degrades
latency since the beacon intervals are longer for lar-
ger values of k. When k = 5, each hop has a wake-up
latency of 800 ms plus the increased ATIM conten-
tion. With the multilevel power save protocols, the
routing protocol adjusts the power save level of
nodes along a path to ensure that the latency is less
than L.

Additionally, we can see from Table 2 that the
multilevel protocols in Fig. 7 have a lower deviation
in their latency among different runs than the corre-
sponding protocol without the multilevel extension.
The multilevel protocols have a deviation of about
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20% on average, whereas PSM and CS-ATIM with-
out the multilevel extension have about a 35% devi-
ation on average. This is due to the fact that a wider
range of average latencies are possible in the non-
multilevel protocols for different topologies and
traffic patterns.

From Fig. 6, we can see that our carrier sense
techniques from [24] integrate nicely with the multi-
level power save scheme. In particular, by using CS-
ATIM, we are able to achieve virtually the same
latency at using PSM (and well below the L thresh-
old) while consuming less energy than the PSM ver-
sion of multilevel power save. All of the protocols
seem to plateau at a point where the utility of add-
ing more power save levels diminishes. The multi-
level CS-ATIM protocol seems to reach this
plateau with only two power save levels and shows
only a slight decrease in energy consumption after
this point.

In Figs. 8-10, we set k = 2 and show the effects of
changing L, the desired latency, on energy con-
sumption and the observed latency, respectively.
Again, we see that the multilevel power save proto-
cols achieve the latency bound with only a slight
increase in energy. In particular, we can see that,
for k=2, if a latency of less than about 300 ms is
desired, then the power save protocols that do not
use multilevel power save cannot achieve this. With-
out multilevel power save, the only option would be
to turn off power save which, as we can see from
Fig. 8, substantially increases energy consumption
by more than a factor of 2. Furthermore, in
Fig. 10, we can see that virtually none of the individ-
ual runs exceed the latency bound when using the
multilevel extension. We note that a few of the flows
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do exceed the latency bound by a small amount.
This occurs because our protocol adjusts the power
save induced latency and does not account for trans-
mission times and queuing delays. Thus, our proto-
col occasionally sets the power save states such that
they are close to or equal to L, but the extra delays
make the observed latency slightly higher than L.
In Figs. 11-13, we show the effects of changing L
for k= 3. We can see that the multilevel power save
protocols use slightly more energy relative to the
other power save protocols than for the k =2 case.
However, the multilevel power save protocols are
also much more useful in achieving the latency
bound. In Fig. 12, we can see that an application
with L up to about 600 ms cannot achieve its bound
without the use of multilevel power save protocols
or turning off power save all together. The 600 ms
is a function of the average hop count in the net-
work and beacon interval size. From Figs. 9 and
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12, we can infer that the average hop count is
approximately three in our scenarios since the

latency with a 100 ms beacon interval is about
300 ms and with a 200 ms beacon interval is about
600 ms. As with the k=2 case, we can see in
Fig. 13 that virtually none of the individual runs
exceed the latency bound when using the multilevel
extension. As discussed earlier, the bound is occa-
sionally exceeded since our protocol only accounts
for the power save induced latency whereas the
observed value is also affected by the packet trans-
mission time and queuing delay.

5. Energy load balancing extensions

As in previous work [25], it is still a concern that
certain nodes that are chosen to have a high energy
power save state early may end up receiving a dis-
proportionate amount of the network’s traffic
because they have a favorable metric. To address
this, we propose that higher energy nodes periodi-
cally try to “patch” their place on the route with
another node with a power level less than or equal
to it that can be reached by both its upstream and
downstream neighbors on the route. A node could
try this procedure when its residual energy falls
below a specified level or when its recent energy con-
sumption rate exceeds a certain level.

Such a situation may occur when two nodes, say
A and B, are equivalent from a routing perspective
and are in the same power save state when the
RREQ is initially broadcast. In this circumstance,
node 4 may be selected, for example, because it
wins access to the channel before B and rebroad-
casts the RREQ first. Thus, patching would allow
A to eventually switch places with B to balance
the energy consumption of the two nodes.

We note that others [2] propose delaying the
RREQ proportional to remaining energy. However,
a node with more energy at the time of the RREQ
may eventually consume more energy than its neigh-
bors and require load balancing. Also, such a
scheme assumes a homogeneous environment where
all devices have the same initial energy and/or they
all consume energy at the same rate. In practice, this
may not be true.

To do this, the node desiring the patch, say P,
broadcasts a message that is received by both its
upstream and downstream neighbors (nbr,, and
nbryown, respectively) asking them each to broadcast
a packet to test which nodes are neighbors to both
nbry, and nbryow,. This packet also includes P’s
residual energy. Any node that receives both the
packet broadcast by nbr,, and nbrqown and has more
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residual energy that P is a candidate to replace P on
the path. Such nodes respond to P and then P can
select the node with the highest remaining residual
energy. Standard techniques such as choosing a
backoff interval proportional to a node’s residual
energy can be used to ensure that nodes with a
higher residual energy reply first.

The process of patching a route is shown in
Fig. 14. Here, we assume that traffic is being sent
along the route 4 — B — C and that B wants to
try to remove itself from the path. Thus, B sends
out a broadcast indicating that it wants to try to
patch the route between A and C. In turn, 4 and
C broadcast a packet to help other nodes determine
their reachability. In this example, N;, N,, and N3
cannot take B’s place because they do not have both
A and C as neighbors. The only two candidates to
take B’s place are N4 and Ns, since both are neigh-
bors of both 4 and C. In order for N5 to take B’s
place, it would be necessary for it to communicate
this to B via 4 and/or C. This is in contrast to N,
which can communicate with B directly. This
implies that the communication overhead and com-
plexity for N4 to be used is less than if N5 is used. In
order for N4 or N5 to take B’s place on the route,
they need to have more residual energy than B.

If a node is part of multiple, disjoint routes, it can
still try this patch procedure incrementally by apply-
ing it to the path which requires the highest energy
level until an acceptable level is reached. We note
that in this scenario, a node may also need to
account for the rate at which traffic is being for-
warded on a given path since flows which require
a lower energy power save level, say fi,w, may still
cause the node to consume more energy than a flow
that requires a higher power save level, say fpigh, if
the fiow is sending at a higher rate that fyon. Another

Fig. 14. Patching a route in multilevel power save.

issue is instability in the route if two neighbors try
to patch their place on the route simultaneously.
If a node hears a patch request from one of its
neighbors, it defers from issuing a patch request
until the current one is resolved or a timeout occurs.
We have not evaluated this protocol extension.
Adding it to the protocol and testing it via simulation
and/or implementation is an area of future work.

6. Conclusion

Motivated by the need for power save protocols
(for reasons discussed in Section 1), we have pro-
posed a link layer technique and routing protocol
that adapts to an application-defined latency in an
energy-efficient manner. Like previous work [1-4],
we propose placing nodes in different power save
states that tradeoff energy consumption and latency.
The contribution of our work is that we design pro-
tocols to handle k levels of power save states whereas
previous work only focused on the k=1 and k=2
cases. Our adaptive sleeping technique allows nodes
to adjust their sleeping interval in response to the
desired latency of data that it is forwarding.

We evaluate our protocols via simulation and
find that they allow end-to-end latency bounds to
be achieved with much less energy consumption
than turning power save off. Also, traditional power
save protocols (i.e., k = 2) are unable to achieve the
latency bound in many cases despite consuming
only slightly less energy than our multilevel proto-
col. Thus, our technique can maintain a desired
latency bound with only a small increase in energy
consumption over traditional power save protocols
and with far less energy consumption than turning
power save off.

Appendix A. Minimum energy routing proof

Sections A.l1, A.2, and A.3 give instances of
known NP-complete problems [26,27]. We use these
for the reduction in our proof in Section A.4.

A.1. Steiner tree problem (ST)

INSTANCE: An undirected graph G = (V, E), an
edge cost function ¢: E— N, a subset SC V' of
required vertices.

SOLUTION: A subtree of G that includes all the
vertices in S. This is called a Steiner tree. Note that
vertices in '\ S may be included in the Steiner Tree
and are called Steiner vertices.
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MEASURE: Sum of the edge weights in the
subtree.

A.2. Steiner tree with unit edge weights
problem (ST-UE)

A proof to show that ST is NP-complete is based
on a reduction from the exact covering by 3-sets
problem [26]. The ST proof [26] answers the follow-
ing decision problem: given a bipartite graph
G = (V, E) (the bipartite property is a sufficient con-
dition for being an undirected graph), a subset of
vertices S C V, and an integer B, is there a tree T
in G that spans all of the S terminals and has at
most B edges?

By design, the ST proof [26] shows that ST is NP-
complete even if the cost function is ¢ : £ — 1. Thus,
we know that even though S7-UE (defined below) is
a limited case of S7, it is still NP-complete.

INSTANCE: An undirected graph G = (V, E), an
edge cost function c¢: E— 1, a subset SC V of
required vertices.

SOLUTION: A subtree of G that includes all the
vertices in S.

MEASURE: Sum of the edge weights in the
subtree.

We can see that the measure in S7-UE is equiva-
lent to the following measure:

MEASURE 2: The number of edges in the
subtree.

Trivially, minimizing the number of edges in a
subtree also minimizes the number of vertices in
the subtree since V1= Et + 1.

A.3. Steiner tree on bidirected graphs (ST-BG)

Any instance of ST (which, of course, includes
ST-UE) can be reduced to S7-BG by replacing
every undirected edge e; € E with two directed
edges e; and ¢;” and giving both of the directed
edges the same cost as the original undirected edge.
Then, any one node in S, which we denote r, is
chosen as the root.°

5 The notation e; denotes an edge between i and j in the
undirected case and a directed edge from i to j in the directed
case.

® In the undirected case, declaring a root is unnecessary since
every node can reach every other node in the tree. In the directed
case, we specify a root to create a structure which ensures that the
root can reach every other node in the tree.

Thus, the ST-BG problem (also called the Steiner
arborescence problem [26)) is defined as follows.”

INSTANCE: A bidirected graph G =(V,E), an
edge cost function c¢: E— 1, a subset SC V of
required vertices, and a root vertex, r.

SOLUTION: A directed subtree of G such that
there exists a path from r to every vertex in S.

MEASURE: Sum of the edge weights in the
subtree.

The corresponding decision problem is: given an
instance of ST-BG, is there a solution such that the
sum of the edge weights is less than W?

A.4. Minimum energy routing for multilevel power
save (MER)

We now define the MER problem and show that
it is NP-complete using a reduction from S7-BG. As
described in Section 3, we only consider the latency
induced by the power saving protocol because this
delay tends to be larger relative to contention and
queuing delay in the networks that we consider.
Thus, the /; term mentioned below is only a function
of a node’s power save state and not a function of
the number of flows that it and its neighbors are
forwarding.

INSTANCE: A bidirected graph G = (V, E), a set
of flows F (i.e., a set of source—destination tuples), a
maximum end-to-end latency threshold for a path
L, and k the number of power save states available
to each node. Each power save state has an associ-
ated latency, /;, and energy consumption, g; (where
1 <i<k).Fori<j,l;<l;and g; > g; When a node
is in PS state i, its energy consumption is g; and the
latency cost of all its incoming edges is [; (since
the latency cost is only dependent on the receiver
as discussed in Section 3.1).

SOLUTION: A set of power save states for each
node such that each flow in F can be routed without
L being violated for any of the flows.

MEASURE: Sum of the energy consumed by the
power save state (i.e., g;) of each node in the
network.

The decision problem that we use for MER is:
can we assign power save states for an instance
of MER such that the sum of the energy con-
sumed by the power save state of each node is less
than Y?

7 We skip the general definition of ST-BG, where ¢: E — N,
and just focus on the version with unit edge weights.
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It is easy to verify that MER is in NP. Given a set
of PS states for each node, all of the link costs in the
network can be fixed (i.e., the appropriate value of /;
for all incoming links to a node). Then, we do short-
est path routing on the weighted graph obtained by
using latencies as edge weights for each flow in F
and verify that the cost of each path is less than
L, which can be done in polynomial time. Addition-
ally, we verify that the sum of all the power save
states is less than Y which can be done in polyno-
mial time.

For convenience, we consider a special case of
MER where:

o k=2

e g;=1and g, =0.

e/i=1and L=1V].

e L=1|V—-1.

o All flows originate from one sender.

o A flow is capable of satisfying the latency con-
straint. This can be checked in polynomial time
by placing all nodes in their highest energy state
and computing a flow’s shortest path cost. If
this cost is greater than L, then we can immedi-
ately decide that the instance of MER is
unsolvable.

By showing that the above special case of MER is
NP-complete, we will have proved the general MER
problem to be NP-complete. We do so with a reduc-
tion from S7-BG. We show that given any instance
of the ST-BG problem, it is possible to construct an
instance of the MER problem such that the instance
of ST-BG has a total edge weight less than W if and
only if the MER instance has a total energy con-
sumption less than W+ 1.

Given an instance of ST-BG, we convert it to an
instance of MER as follows. The graph, G, from
ST-BG is used as the graph in MER. The root, r,
from ST-BG is the one sender in our special case
of MER and each vertex in ST-BG’s S set corre-
sponds to a receiver in MER.

Now, we need to show that an instance of S7-BG
has a total edge weight less than W if and only if the
corresponding MER instance has a total energy
consumption less than W+ 1.

o If ST-BG Has Total Edge Weight < 17 Then, we
select all of the nodes in ST-BG’s subtree to
remain in PS state 1 while all other nodes are
put in PS state 2. Since the cost of each edge in
the tree is 1 and there can be at most |V]| — 1

edges in the tree, then the latency must be less
than or equal to L. This is because each of the
selected nodes has an incoming latency of /; =1
and there can be at most | V| — 1 edges in the tree
since there are |V] nodes total. Thus, the total
latency is at most L = |V| — 1. Since there must
be at most W — 1 edges in the subtree, there
can be at most W nodes in PS state 1 and, thus,
the sum of the energy consumption in the net-
work is less than W+ 1.

e If MER Has Total Energy Consumption < I + 1
and the Latency < L =|V] — 1: Then, all the
nodes on every routing path must be in PS state
1 or else the latency would be greater than L
(since one node in PS state 2 would make the
latency at least |V|> L). Thus, each node on
the routing paths is using one unit of energy.
Therefore, if the total energy consumption is less
than W+ 1, then at most W nodes in the net-
work are using one unit of energy and the source
can reach all receivers. Since the source, each
receiver, and all intermediate nodes on the paths
form a tree with at most W nodes, we have a sub-
tree with at most W — 1 edges.

References

[1] R. Zheng, R. Kravets, On-demand power management for
ad hoc networks, in: IEEE Infocom 2003, April 2003.

[2] C. Sengul, R. Kravets, TITAN: On-demand topology
management in ad hoc networks, ACM Mobile Comput-
ing and Communications Review (MC2R) 9 (1) (2005)
77-82.

[3] B. Chen, K. Jamieson, H. Balakrishnan, R. Morris, Span:
An energy-efficient coordination algorithm for topology
maintenance in ad hoc wireless networks, in. ACM Mobi-
Com 2001, July 2001.

[4]Y. Xu, J. Heidemann, D. Estrin, Geography-informed
energy conservation for ad hoc routing, in: ACM MobiCom
2001, July 2001.

[5] T. Starner, Thick clients for personal wireless devices, IEEE
Computer 35 (1) (2002) 133-135.

[6] D.G. Sachs, W. Yuan, C.J. Hughes, A. Harris, S.V. Adve,
D.L. Jones, R.H. Kravets, K. Nahrstedt, GRACE: A
hierarchical adaptation framework for saving energy, Uni-
versity of Illinois at Urbana-Champaign, Tech. Rep.
UTUCDCS-R-2004-2409, February 2004.

[7] N. Jain, Vodafone Symposium Presentation at the Univer-
sity of Illinois at Urbana-Champaign, April 8-10, 2005. The
author was at Qualcomm Research at the time of the
presentation.

[8] C.F. Chiasserini, R.R. Rao, Combining paging with
dynamic power management, in: IEEE Infocom 2001, April
2001.

[9] IEEE 802.11, Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) Specifications, 1999.



M.J. Miller, N.H. Vaidya | Ad Hoc Networks 6 (2008) 210-225 225

[10] J. Elson, K. Romer, Wireless sensor networks: a new regime
for time synchronization, in: ACM Hot Topics in Networks
(HotNets) 2002, October 2002.

[11] M. Maréti, B. Kusy, G. Simon, A. Lédeczi, The flooding
time synchronization protocol, in: ACM SenSys 2004,
November 2004.

[12] N.H. Vaidya, A case for two-level distributed recovery
schemes, in: ACM SIGMETRICS 1995, May 1995.

[13] R. Zheng, J.C. Hou, L. Sha, Asynchronous wakeup for ad
hoc networks, in: ACM MobiHoc 2003, June 2003.

[14] C. Schurgers, V. Tsiatsis, S. Ganeriwal, M. Srivastava,
Optimizing sensor networks in the energy-latency—density
design space, IEEE Transactions on Mobile Computing 1 (1)
(2002) 70-80.

[15] A. El-Hoiydi, J.-D. Decotignie, WiseMAC: An ultra low
power MAC protocol for multi-hop wireless sensor net-
works, in: Workshop on Algorithmic Aspects of Wireless
Sensor Networks (ALGOSENSORS) 2004, July 2004.

[16] D.B. Johnson, D.A. Maltz, Dynamic source routing in ad
hoc wireless networks, in: T. Imielinski, H. Korth (Eds.),
Mobile Computing, Kluwer Academic Publishers, 1996, pp.
153-181 (chapter 5).

[17] R. Draves, J. Padhye, B. Zill, Comparison of routing metrics
for static multi-hop wireless networks, in: ACM SIGCOMM
2004, August—September 2004.

[18] M.J. McGlynn, S.A. Borbash, Birthday protocols for low
energy deployment and flexible neighbor discovery in ad hoc
wireless networks, in: ACM MobiHoc 2001, October 2001.

[19] C.E. Perkins, E.M. Royer, Ad-hoc on demand distance
vector routing, in: IEEE WMCSA 1999, February 1999.

[20] Link-state routing protocol. <http://en.wikipedia.org/wiki/
Link-state_routing_protocol>.

[21] P. Jacquet, P. Miihlethaler, T. Clausen, A. Laouiti, A.
Qayyum, L. Viennot, Optimized link state routing protocol,
in: IEEE International Multi Topic Conference (INMIC)
2001, December 2001.

[22] D. Eppstein, Finding the k shortest paths, SIAM Journal on
Computing 28 (2) (1998) 652-673.

[23] ns-2 — The Network Simulator. <http://www.isi.edu/nsnam/
ns>.

[24] MLJ. Miller, N.H. Vaidya, Improving power save protocols
using carrier sensing for dynamic advertisement windows, in:
IEEE MASS 2005, November 2005.

[25] J.-H. Chang, L. Tassiulas, Energy conserving routing in
wireless ad-hoc networks, in: IEEE Infocom 2000, March
2000.

[26] F.K. Hwang, D.S. Richards, P. Winter, The Steiner Tree
Problem, Elsevier Science Publishers, 1992.

[27] P. Crescenzi, V. Kann, A compendium of NP optimization
problems. <http://www.nada.kth.se/viggo/problemlist/
compendium.html>.

Matthew J. Miller received the BS
degree, summa cum laude, from Clem-
son University in Computer Engineering
and the MS degree from the University
of Illinois at Urbana-Champaign
(UTUC) in Computer Science. Currently,
he is pursuing a Ph.D. degree at UIUC.
His research interests are in wireless
networks, with an emphasis on energy
efficiency, sensor networks, and security.
In 2001, he received a US National Sci-
ence Foundation Fellowship and an ASEE National Defense
Science and Engineering Graduate Fellowship. He is a student
member of IEEE. For more information, please visit http://
www.matthewjmiller.net.

Nitin H. Vaidya received the Ph.D.
degree from the University of Massa-
chusetts at Amherst. He is presently an
Associate Professor of Electrical and
Computer Engineering at the University
of Illinois at Urbana-Champaign
(UTUC). He has held visiting positions at
Microsoft Research, Sun Microsystems
and the Indian Institute of Technology-
Bombay. His current research is in the
areas of wireless networking and mobile
computing. His research has been funded by various agencies,
including the National Science Foundation, DARPA, BBN
Technologies, Microsoft Research, and Sun Microsystems. He is
a recipient of a CAREER award from the National Science
Foundation. He has served on the program committees of several
conferences and workshops, and served as program co-chair for
the 2003 ACM MobiCom. He has served as an editor for several
journals, and presently serves as Editor-in-Chief of the IEEE
Transactions on Mobile Computing. He is a senior member of
IEEE and a member of the ACM. For more information, please
visit http://www.crhc.uiuc.edu/~nhv/.




