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Problem Statement

Network ﬁle systems cannot be used over
slower WANSs due to longer delay, less
available bandwidth

% Ad hoc solutions:

+Copy file to local machine, edit, then upload.
Risks update conflicts.

+Use remote login. Potentially large interactive
delays.



Overvrew of Propesed Selutron

Transfer less data over the network by
exploiting inter-file similarities

* Follow close-to-open consistency model

» Efficiently divide files into “chunks” and
only transfer chunks the remote machine
does not already have




Key COIltl‘lbutIOIl
Proposes ﬁle update mechamsm Wthh aV01ds
transferring redundant data from different versions
of a file over the bottleneck resource while
providing some consistency.

+ Use hashing to exploit inter-file similarities and save
bandwidth

+ Provide an efficient scheme to delineate files while not
causing massive breakpoint changes for small
modifications

+ Decrease latency delay by pipelining read and write
RPCs

+ Provide robustness despite client failures



Related Work

3 AFS Servers prov1de callbacks to chents
when other clients modify a file

» Leases: Similar to AFS, but server 1s only
obliged to report changes for specified
amount of time

* rsync: Exploits inter-file similarities when
copying directory trees over a network




LBFS Hashmg Scheme

= Use SHA-I scheme assumes data w1th equal hash
values are the same (extremely low collision
probability)

% Delineate a file into chunks with hash values
based on data within chunk

** Needs to be resistant to small changes causing
completely new chunk values for the file (e.g.
inserting a byte at the beginning of the file)



LBFS Hashmg Scheme (2)

= Scan entlre ﬁle Whlle calculatmg Rabm

fingerprints values for overlapping 48-byte
windows

* If the last 13 bits of the fingerprint match specified
value, allow window to be a breakpoint between
two chunks

+ Expected chunk size =213 = 8 KB

* Place upper and lower bound on chunk sizes to
avoid pathological cases




Cons1stency

Malntam database correlatlng hash Values to
(file, offset, count) tuples. Do not rely on
database, always compute hash values to
reconstruct file.

* Operate only on whole files

* Close-to-open: When a client has written
and closed a file, another client opening the
same file will see the new contents




C0n31stency (2)

Chent receives lease on ﬁle

* Server notifies clients of changes to the file
while the lease 1s valid

»* When a client opens a file for which the
lease has expired, 1t checks the file
attributes for modification times

* If the server version 1s more recent, the
reading protocol takes place




Readmg Protocol

Client Server

File not in cache
Send GETHASH

Break up file into chunks, (¢offset+count

shal not in database, send normal read
sha? not in database, send normal read

sha3 in database
Return data associated with shal

Return data associated with sha2

Put shal in database

Put sha? in database

File reconstructed. return to user

Figure 2: Reading a file using LBFS




Writing Protocol

— - — — - — — - — — - — — i — — ——— — i — — i — — i — — - — — i — — i —
Client Server
User closes file
Pick fd

Break file into chunks
Send SHA—1 hashes to server
Create tmp file, map (client, fd) to file

shal n database, write data into tmp file
sha2 not in database

Server has shal sha3 in database, write data into tmp file

Server needs sha2, send data
Server has sha3
Server has everything, commit
Put sha2 into database
write data into tmp file
Na error, copy data from tmp file
into target file

File closed, return to user

Figure 3: Writing a file using LBFS




Implementatlon

Chent uses xfs ﬁle system ﬁle access 1s
done via NFS, asynchronous RPC over TCP
1s used for communication

* All RPC traffic 1s gzip’d

»* Unix semantics for 1-nodes leads to
inefficiency and possible inconsistency
during server crash




Evaluation

»* The window size for computing the Rabin
fingerprint does not seem to have much
impact on data sharing

# Expected chunk sizes were close to
expected value

»* Some small changes do remove much
commonality between revisions (e.g.
renumbering all the pages of a document)




Bandw1dth Utlhzatlon

3 Tests done on native ﬁle system (NFS or
CIES), AFS, just Leases+gzip, and LBFS

* Tests involve editing MS Word document,
recompiling new version of emacs and
changing the source tree between perl
versions




Bandw1dth Utlhzatlon Graph
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Figure 6: Normalized bandwidth consumed by three workloads. The first four bars of each workload show upstream bandwidth, the
second four downstream bandwidth. The results are normalized against the upstream bandwidth of CIFS or NF5S.




Other Performance Results

3 Reduees apphcatlon exeeutlon tlme
significantly

»* Execution faster than AFS and Leases+gzip
as bandwidth decreases

= Performs better than AFS independent of
RTT and similarly to Leases+gzip

#* All perform about the same in the presence
of a lossy link




Conclusion

= LBFS avoids transmitting redundant data to
a remote machine

* Provides method to delineate files 1n way
which 1s resistant to the propagation of a
small modification changing breakpoints

* Performs much better than the competition




Discussion
* Why does AFS use more downstream bandwidth
than the native file system in Figure 6?

* Consistency model can be violated. Would server
blocking all but one client from writing be better?

* Tests are 1n very biased conditions. How about
testing a mix where only k& of the » files were
previously on the client?

* Scalability 1s an unaddressed i1ssue. LBFS
requires server to do non-trivial computation for
each client file access.




Dlscussmn (2)

Would most users accept the con51stency
model, or 1s 1t too weak? Could schemes to
merge writes be added?

* Could the scheme be changed to allow
block caching rather than entire files?

* Any more elegant solutions to the static 1-
number problem?




C0n51stency Model Problem

“If multlple chents are
writing the same
file, then the last one
to close the file will
win and overwrite
changes from the
others.”

A calls COMMITTMP

‘ Acloses file F

B calls COMMITTMP

Bcloses file F
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Figure 7
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Figure 7: a) Normalized application performance on top of several file systems over a cable modem link with 384 Kbit/sec uplink and
1.5 Mbit/sec downlink. Execution times are normalized against CIFS or NFS results. Execution times in seconds appear on top of the
bars. b) Uplink bandwidth utilization of the MSWord and gee benchmarks.




F1gures 3 and 9
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Figure 8: Performance of the gcc workload over various band-
widths with a fixed round-trip time of 10 ms.
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Figure 9: Performance of the gcc workload over a range of
round-trip times with fixed 1.5 Mbit/seec symmetric links.




Figure 10
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Figure 10: Performance of a shortened ed benchmark over var-
ious loss rates, on a network with fixed 1.5 Mbit/sec symmetric
links and a fixed round-trip time of 10 ms.




