
A Low-bandwidth Network

File System

Athicha Muthitacharoen et al.

Presented by Matt Miller

September 12, 2002

Problem Statement

Network file systems cannot be used over

slower WANs due to longer delay, less

available bandwidth

Ad hoc solutions:

Copy file to local machine, edit, then upload.

Risks update conflicts.

Use remote login. Potentially large interactive

delays.

Overview of Proposed Solution

Transfer less data over the network by

exploiting inter-file similarities

Follow close-to-open consistency model

Efficiently divide files into “chunks” and

only transfer chunks the remote machine

does not already have

Key Contribution

Proposes file update mechanism which avoids
transferring redundant data from different versions
of a file over the bottleneck resource while
providing some consistency.

Use hashing to exploit inter-file similarities and save
bandwidth

Provide an efficient scheme to delineate files while not
causing massive breakpoint changes for small
modifications

Decrease latency delay by pipelining read and write
RPCs

Provide robustness despite client failures

Related Work

AFS: Servers provide callbacks to clients

when other clients modify a file

Leases: Similar to AFS, but server is only

obliged to report changes for specified

amount of time

rsync: Exploits inter-file similarities when

copying directory trees over a network

LBFS Hashing Scheme

Use SHA-1 scheme, assumes data with equal hash

values are the same (extremely low collision

probability)

Delineate a file into chunks with hash values

based on data within chunk

Needs to be resistant to small changes causing

completely new chunk values for the file (e.g.

inserting a byte at the beginning of the file)

LBFS Hashing Scheme (2)

Scan entire file while calculating Rabin
fingerprints values for overlapping 48-byte
windows

If the last 13 bits of the fingerprint match specified
value, allow window to be a breakpoint between
two chunks

Expected chunk size = 213 = 8 KB

Place upper and lower bound on chunk sizes to
avoid pathological cases

Consistency

Maintain database correlating hash values to
(file, offset, count) tuples. Do not rely on
database, always compute hash values to
reconstruct file.

Operate only on whole files

Close-to-open: When a client has written
and closed a file, another client opening the
same file will see the new contents

Consistency (2)

Client receives lease on file

Server notifies clients of changes to the file
while the lease is valid

When a client opens a file for which the
lease has expired, it checks the file
attributes for modification times

If the server version is more recent, the
reading protocol takes place

Reading Protocol

Writing Protocol

Implementation

Client uses xfs file system, file access is

done via NFS, asynchronous RPC over TCP

is used for communication

All RPC traffic is gzip’d

Unix semantics for i-nodes leads to

inefficiency and possible inconsistency

during server crash

Evaluation

The window size for computing the Rabin
fingerprint does not seem to have much
impact on data sharing

Expected chunk sizes were close to
expected value

Some small changes do remove much
commonality between revisions (e.g.
renumbering all the pages of a document)

Bandwidth Utilization

Tests done on native file system (NFS or

CIFS), AFS, just Leases+gzip, and LBFS

Tests involve editing MS Word document,

recompiling new version of emacs and

changing the source tree between perl

versions

Bandwidth Utilization Graph

Other Performance Results

Reduces application execution time
significantly

Execution faster than AFS and Leases+gzip
as bandwidth decreases

Performs better than AFS independent of
RTT and similarly to Leases+gzip

All perform about the same in the presence
of a lossy link

Conclusion

LBFS avoids transmitting redundant data to

a remote machine

Provides method to delineate files in way

which is resistant to the propagation of a

small modification changing breakpoints

Performs much better than the competition

Discussion

Why does AFS use more downstream bandwidth
than the native file system in Figure 6?

Consistency model can be violated. Would server
blocking all but one client from writing be better?

Tests are in very biased conditions. How about
testing a mix where only k of the n files were
previously on the client?

Scalability is an unaddressed issue. LBFS
requires server to do non-trivial computation for
each client file access.

Discussion (2)

Would most users accept the consistency

model, or is it too weak? Could schemes to

merge writes be added?

Could the scheme be changed to allow

block caching rather than entire files?

Any more elegant solutions to the static i-

number problem?

Consistency Model Problem

“If multiple clients are

writing the same

file, then the last one

to close the file will

win and overwrite

changes from the

others.”

Figure 1

Figure 7

Figures 8 and 9

Figure 10

