
Improving Connectivity in a Scatternet Formation Algorithm

Cristina L. Abad
University of Illinois at Urbana–Champaign

cabad@uiuc.edu

Matthew J. Miller
University of Illinois at Urbana–Champaign

mjmille2@uiuc.edu

Abstract

Scatternets are ad hoc networks formed by Bluetooth
devices. They are formed by connecting smaller net-
works known as piconets. In this paper, we present
and evaluate a Tree Scatternet Formation with To-
kens (TSF–T) protocol to form scatternets efficiently.
This protocol, which extends existing algorithms, al-
lows devices to be out–of–range and dynamically
enter and leave the network. In addition, TSF–T
provides quick scatternet formation and almost al-
ways merges all disjoint networks into one scatternet.
This scheme increases the efficiency of the devices
that bridge piconets by reducing the master/slave
breeches and gives the routing protocol more freedom
to choose efficient paths. The paper also describes a
method to allow two nodes in a tree to enter a critical
section which could be used to assure only two nodes
are transmitting certain data at any given time in a
communication network.

1 Introduction

Issues in ad hoc networks have been one of the richest
areas of research recently. One area of interest is how
to form topologies efficiently so that routes are estab-
lished while battery power is conserved. Bluetooth
technology [1] has generated interest in this area be-
cause of its potential in the commercial market. The
Bluetooth interface, described in Section 1.1, makes
topology formation even more difficult because of the
extra constraints placed on how devices may form a
network. These constraints are necessary due to the
limited number of channels devices use for commu-

nication and scarce battery power characteristics of
most Bluetooth devices.

1.1 The Bluetooth Interface

The Bluetooth Special Interest Group [1] was
founded to develop a technology that could be used
to form short–range, wireless, ad hoc networks. Blue-
tooth provides communication between a variety of
electronic devices via low power, low cost radio chips.

Devices communicate by using spread spectrum
frequency hopping. There are 79 channels available
for communication within the 2.45 GHz band. As
the number of Bluetooth devices in an area increases,
there must be ways to efficiently share the limited re-
sources. To deal with this issue, the group defined
two logical arrangements to better utilize the com-
munication channels.

A piconet consists of one master device and up to
seven slave devices. All members of a piconet share
the same channel and communication is regulated by
the master. The maximum number of slave devices
is bounded to limit device overutilization. There is
no direct communication between slaves, so all data
must first pass through the master. To form piconets,
devices first enter an INQUIRY or INQUIRY SCAN
state. These states correspond to a device send-
ing packets in an attempt to discover other devices
(INQUIRY) or listening for INQUIRY packets (IN-
QUIRY SCAN). Since there is a wide range of possi-
ble frequencies for this state (32 for the US and most
of Europe), the sender and listener hop frequencies at
different rates. The sender then must determine the
listener’s identity by entering the PAGE state. Sim-
ilarly, the listener will enter the PAGE SCAN state

1



to respond and eventually form a connection. More
detail about the time associated with these states can
be found in [2, 3, 4]. It suffices to say the inquiry time
is the dominating phase of the connection process.

The second logical arrangement is a scatternet
which allows many devices to communicate. Scat-
ternets are composed of piconets which share a de-
vice. This shared entity multiplexes its time between
the piconets. It is obvious that the method by which
scatternets are formed can have a large impact on
the performance of the ad hoc network. However, the
Bluetooth Specification does not provide any proto-
col for scatternet formation. In Section 1.2, we will
discuss some attempted solutions to this problem.

1.2 Related Work

In [4], the Bluetooth Topology Construction Proto-
col (BTCP) is presented. In BTCP, a scatternet is
formed by the devices first choosing one leader via an
election algorithm. This leader then determines how
many masters are necessary to minimize the number
of piconets. Masters and bridges are then assigned
by the leader subject to constraints specified in the
election phase. This approach minimizes the num-
ber of piconets, allows roles to be chosen efficiently
(since constraints are specified) and requires no a pri-
ori knowledge of other devices. Another contribution
of the paper is the idea that devices randomly en-
ter the INQUIRY or INQUIRY SCAN state during
the election process. This is an important part of
the algorithm discussed in Section 2.1. BTCP, how-
ever, suffers greatly in scalability as the scheme is
only designed and analyzed for up to 36 devices. An-
other downside is the algorithm is highly dependent
on the interarrival time of the devices in the election
process. The greater the differences in device arrival
times, the worse the algorithm will perform.

In [5], a protocol is presented which achieves
O(log n) time for scatternet formation. The forma-
tion process resembles the election phase of BTCP,
but connects the devices while finding leaders. The
protocol is more dynamic with piconets merging
when possible and devices migrating to different pi-
conets under certain circumstances. This approach
does not suffer from the scalability or interarrival

time issues of BTCP.
Both of these approaches operate under unrealis-

tic assumptions. First, it is assumed all devices are
within range of each other. There could be scenarios
where devices are out–of–range, but could still par-
ticipate in the same scatternet by bridged piconets.
Another shortcoming is the algorithms do not deal
with devices leaving the piconets. In Section 2.1,
a Tree Scatternet Formation (TSF) protocol is pre-
sented that addresses these issues.

The contributions of our paper are:

• Extend Raymond’s Tree Algorithm [6] to allow
two nodes in a tree to enter a critical section at
one time. This could have applications in net-
works where it is desired that exactly two de-
vices are communicating some specified data at
any given time.

• Improve the connectivity of TSF to form larger
scatternets in some situations where the original
protocol would result in disjoint scatternets.

• Decrease the time it takes for the protocol to
form one scatternet in which all nodes can com-
municate with each other.

• Allow some bridges in the scatternet to be con-
figured as slave/slave in the piconets they con-
nect. This reduces the master/slave breeches in
the scatternet. This concept is further explained
in Section 2.

• Consider device constraints, such as mobility
and battery power, when forming scatternets.

The rest of this paper is organized as follows. In
Section 2, some desirable properties of scatternet for-
mation are enumerated and the TSF protocol is de-
scribed. In Section 3, our extensions to TSF are de-
scribed. In Section 4, the new protocol is simulated
and its performance compared to the original. In
Section 5, directions of future work are suggested.
Section 6 concludes the paper.

2



2 Scatternet Properties

From the previous section, it is easy to see there
are many issues that arise when attempting to form
scatternets. Since Bluetooth was designed primarily
for wireless settings, device resources may be scarce,
and hence, overutilization can be a major problem.
Therefore, scatternet formation protocols should ad-
here to certain design principles. Some of the proper-
ties an ideal scatternet formation should include are:

Minimize the Number of Piconets This allows
easier network control and reduces the number
of collisions due to shared channels. This also
minimizes the number of bridge devices. Com-
munication time will increase with the number of
bridges because for every piconet a packet passes
through, it must wait for the bridge to be mul-
tiplexed.

Bridges Connect Two Piconets Switching be-
tween piconets is a heavyweight procedure since
devices must change the channel they are using.
If a bridge was involved in a large number
of piconets, the multiplexing overhead would
dominate communication time and delay other
packets waiting for the bridge. Additionally,
requiring a bridge to relay messages for more
than two piconets could overload the device.

Connectivity Every device should be able to com-
municate with other devices in the scatternet. If
two scatternets are within range of each other by
at least one device, they should merge to achieve
maximum connectivity.

Dynamic Configuration Scatternets should ad-
just when nodes enter and leave at random
times.

Network Diameter The maximum number of hops
between any two nodes in the scatternet should
be minimized. Increasing the number of hops
will cause more delay and resource utilization
for sending packets.

Reduce Contention Similar to the problems
caused by the network diameter. If other

piconets are frequently using a specific piconet
for a relay, a significant portion of the piconet
master’s time will be devoted to bridging these
requests rather than controlling communication
within the piconet.

Avoid Master/Slave and Master/Master Bridges
Since the master must control all communica-
tion in a piconet and slaves cannot exchange
data without the master, it is desirable to form
scatternets such that bridges are slaves in all
their piconets. Otherwise, the master will have
to switch between piconets which will degrade
the amount of inter–piconet communication.

Consider Device Constraints Bluetooth spans a
wide variety of computing devices from hand–
held PDA’s and cell phones to workstations and
printers. The scatternet formation should at-
tempt to avoid placing devices with scarce re-
sources (e.g. battery power) in a location where
utilization may be heavy. In Bluetooth, masters
will have higher utilization than slaves. Also,
the utilization will increase with the number of
connections to a device. Another possible con-
straint in Bluetooth is mobility. Devices with
greater mobility will have a higher probability
of link failure and thus should not have as many
connections as a stationary device.

The TSF protocol, discussed in more detail in Sec-
tion 2.1, addresses the dynamic configuration prop-
erty and improves the connectivity of previous algo-
rithms by allowing out–of–range devices to exist in
the same scatternet. Table 1 offers a comparison of
some existing scatternet formation algorithms with
respect to these properties.

2.1 Tree Scatternet Formation

The original TSF algorithm for determining a
device’s state is shown in Figure 1. A device
can be one of three types: ROOT, NON–
ROOT, or FREE. Every device begins as a
FREE node and alternates states accordingly.

3



Algorithm Strengths Weaknesses
BTCP Minimizes the

number of pi-

conets. Allows

formation ac-

cording to device

constraints.

Not scalable.

Does not handle

devices entering

and leaving after

initial setup. All

devices must be

in–range.

Law et al. Forms diameter

of O(log n). Al-

lows devices to

enter dynami-

cally.

Does not handle

devices leaving.

All devices must

be in–range.

Does not con-

sider device

constraints.

TSF Devices can be

out–of–range.

Allows dynamic

configuration.

Two scatternets

may not connect

if ROOT’s are

out–of–range. All

bridges are mas-

ter/slave. Does

not consider de-

vice constraints.

Table 1: Scatternet Formation Algorithm Properties

The fcomm function on line 13 of TSF is defined as:

fcomm =

{
0 if type = FREE
d if type 6= FREE and A < threshold
A× d otherwise

where A is how long the device has been in the scat-
ternet and d is the degree, or number of connections
of a device. This is designed such that FREE devices
will devote all their time to the FORM stages. The
function also allows devices with more connections to
spend a larger portion of time in the COMM stage.
The E[Tinq] value in the algorithm is the expected
time of the INQUIRY phase in Bluetooth. The D
value is an upper bound on how long a device can
spend in a state. These values are not provided in
the TSF description.

The FORM:INQUIRY and FORM:INQUIRY–
SCAN states correspond to a device entering the

TSF()
1 while true
2 do if last = FORM:INQUIRY
3 then state← FORM:INQUIRY-SCAN
4 last← FORM:INQUIRY-SCAN
5 else state← FORM:INQUIRY
6 last← FORM:INQUIRY
7 t← Random(E[Tinq], D)
8 remain in state for t time
9 if type = ROOT

10 then switch to other FORM state
11 t← Random(E[Tinq], D)
12 remain in state for t time
13 t← fcomm ×Random(E[Tinq], D)
14 if t > 0
15 then state← COMM
16 remain in state for t time

Figure 1: Original TSF Algorithm

Bluetooth state of INQUIRY or INQUIRY SCAN,
respectively. When two devices discover each other
they enter PAGE and PAGE SCAN to form a new
connection. However, not all nodes are allowed to
join with each other. TSF allows the following types
to join:
FREE and FREE One device becomes the master

and the other a slave in a newly formed piconet.
The master becomes the ROOT and the other
device NON–ROOT.

ROOT and ROOT One ROOT becomes a NON–
ROOT and joins the other device’s piconet as a
slave.

NON–ROOT and FREE The FREE node be-
comes a slave and the NON–ROOT a master in a
newly formed piconet. The FREE node updates
its type to NON–ROOT.

It is proven that this scheme will produce loop–free
topologies that consist of a forest of trees. Therefore,
if one scatternet is formed, the protocol will produce
the minimum number of links necessary to guaran-
tee a path between any two nodes. This is desirable

4



in the Bluetooth environment because each link rep-
resents a connection and increased connections will
result in more power consumption.

The protocol places stringent rules on what type of
devices can join. This can limit connectivity in the
situation where nodes are out–of–range of each other.
Consider the situation where two separate scatter-
nets, S1 and S2, have been formed. Let u and v
be NON–ROOT devices in S1 and S2, respectively,
that are in–range and involved in only one piconet
apiece. If the roots of S1 and S2 are out–of–range,
then the scatternet will never become fully connected
even though this could be achieved by forming a link
between u and v.

Another area where TSF may perform poorly is
contention. Assuming the tree formed by TSF is al-
most balanced and communication between any two
devices is equally likely, the piconet of the root will
devote a majority of the time to forwarding packets
between its subtrees. Since the root spends approx-
imately twice as much time in the FORM stages as
other devices, the communication time will be further
limited.

This protocol also makes each bridge a mas-
ter/slave in its piconets. This means the number of
master/slave devices is proportional to the number
of piconets. It would be more desirable to have the
potential for slave/slave bridges since there is no fun-
damental reason why master/slave bridges are neces-
sary.

Finally, TSF assumes a tree topology will be the
most efficient formation. However, if a small number
of cycle–forming links are introduced, there could be
potential benefits. First, the network diameter could
be reduced by linking devices that are several hops
from each other. Also, this would give the routing
protocol more freedom in choosing the path for a
packet. If path becomes congested or resources are
overutilized, the routing protocol could discover al-
ternate paths.

3 TSF with Tokens

In this section we present our protocol which im-
proves the existing TSF version. The design starts

by recognizing that by restricting TSF to only one
node per scatternet that has the ability to merge
trees, the connectivity and scatternet formation time
of the protocol is restricted. Therefore, we propose
allowing all eligible devices the ability to potentially
merge trees.

In Bluetooth, 64 Dedicated Inquiry Access Codes
(IAC) are defined for the INQUIRY process. Devices
will only react to others using the same IAC dur-
ing the INQUIRY and INQUIRY SCAN processes.
In TSF, the ROOT uses the Limited Inquiry Access
Code (LIAC), while other devices use the Generic
Inquiry Access Code (GIAC). This is the method by
which a ROOT will only attempt to discover another
ROOT. First, consider the scenario where the pro-
tocol maintains one ROOT per scatternet, but the
ROOT dynamically changes. This is the classic prob-
lem of achieving mutual exclusion in a tree structure.
A well–known solution to this problem is Raymond’s
Tree Algorithm [6]. A token is introduced to the
scatternet and the token–holding device becomes the
ROOT. The protocol developed is called Tree Scat-
ternet Formation with Tokens, or TSF–T.

By introducing the token, connectivity is improved
because tree mergers are no longer subject to the
range of only one device in each scatternet. This de-
sign also reduces contention because there is not one
device that must continually spend twice as much
time in the FORM stage. However, by introducing
tokens, message overhead is introduced and the pro-
tocol must assume some routing protocol exists.

3.1 Raymond’s Tree Algorithm

The token passing algorithm is further described in
this section since it is important to the TSF–T pro-
tocol. Raymond’s algorithm is chosen because it
provides mutual exclusion, requires small amount of
state that is O(k) for a k-ary tree and averages only
O(log n) messages for a device to enter the critical
section (where n is the number of devices in the tree).
The algorithm is also fair in the sense that the to-
ken does not remain within one subtree when other
devices are requesting it. Each device maintains a
holder pointer, which simply points in the direction
of the token in the tree. Each device also maintains

5



Raymond(e)
1 switch
2 case e = request CS :
3 if request q is empty
4 then send request to holder
5 Enqueue(request q, myself)
6 return
7 case e = receive request message :
8 if request q is empty
9 then send request to holder

10 Enqueue(request q, requester)
11 return
12 case e = receive token :
13 next← Dequeue(request q)
14 holder ← next
15 if next 6= myself
16 then send token to next
17 if request q not empty
18 then send request to holder
19 else canAccessCS ← true
20 return
21 case e = leave CS :
22 if request q not empty
23 then next← Dequeue(request q)
24 holder ← next
25 send token to next
26 canAccessCS ← false
27 if request q not empty
28 then send request to holder
29 return

Figure 2: Raymond’s Tree Algorithm for Event e

a FIFO queue, request q, which keeps track of when
the device or one of its neighbors requests the token.
The outline of the algorithm is shown in Figure 2.

Introducing the token allows more devices the op-
portunity to merge trees. Next, consider the problem
of forming some cyclic links in the tree. By generat-
ing a second token in the tree, such that a device can
only hold one token at a time, the token holders can
not only merge trees, but also bear the responsibil-
ity of creating these cyclic links. Later, the design
of these cyclic links is further described. In this sec-
tion, an extension to Raymond’s Tree Algorithm is

presented to allow for two tokens to exist in a tree.
Let tok1 be the first token and tok2 be the second

token in the tree. First, the restriction is made that a
device may be the token holder for at most one of the
two tokens. The motivation behind introducing the
second token is to allow exactly two devices access to
the critical section at a time. Therefore, the design
would not benefit by having one device hold both
tokens. If such a scenario is desired, the restriction
could be relaxed without affecting the algorithm.

The basic idea is to overlay two Raymond’s Tree
Algorithms running independently on the same tree.
Each device maintains pointers to two token holders,
holder1 and holder2. Additionally, two separate re-
quest queues are maintained for neighboring devices,
request q1 and request q2. When a device wants to
request a token, it first looks in both request queues
to make sure it has not already requested one. If it
has not requested a token, then with probability p,
a message is generated requesting tok1 according to
Raymond’s Tree Algorithm. With probability 1− p,
tok2 is requested. For our scenario, p = 1

2 so each
token is requested with equal probability.

There is another subtle adjustment to the algo-
rithm. Notice that a device could be holding tok1

which implies some state is set to indicate the device
can enter the critical section. While in this state,
tok2 could pass through the device in transit. The
algorithm must not allow such an event to cause the
device to leave the critical section because this would
cause an inconsistency. The device would be holding
tok1 but not be allowed access to the critical section.
This change is shown with respect to tok2 in Figure 3
and a corresponding change would be necessary for
the event when tok1 is received.

3.2 Extending TSF

Now a mechanism exists for passing two tokens in a
tree, TSF can be modified to take advantage of this
algorithm. Additionally, TSF–T will consider a de-
vice’s score when forming a new connection. The
score variable is an indication of how many connec-
tions a device should have. The exact definition of
a device’s score is an area of further research. We
envision it could be a function of a device’s battery

6



Receive–Token2()
1 next← Dequeue(request q2)
2 holder2 ← next
3 if next 6= myself
4 then if holder1 6= myself
5 then canAccessCS ← false
6 send token2 to next
7 if request q2 not empty
8 then send request to holder2

9 else canAccessCS ← true

Figure 3: Modification to Raymond’s Algorithm for
Two Tokens

power and mobility among other factors. Without
loss of generality, let a low score indicate a device
with plentiful power supply and low rate of mobil-
ity. As a device’s score increases, its power supply
decreases and rate of mobility increases. Each device
must have at least one connection to join the scat-
ternet. When forming additional connections, it is
desirable to increase the degree of devices with a low
score as opposed to those with a high score. Consid-
ering these factors, TSF–T must modify TSF’s de-
vice joining procedure to handle tokens, consider the
score variable and allow cyclic links.

Initially devices not involved in a scatternet are of
type FREE, have a predetermined score value, both
request q’s empty and both holder variables set to
nobody. When a device becomes a token holder, it
is of type ROOT. Otherwise, it is FREE or NON–
ROOT depending on whether or not it has any con-
nections. When a device becomes ROOT, it will stay
in this state for a random amount of time chosen uni-
formly from the range (E[Tinq], D). This helps avoid
possible synchronization effects. When a device is of
type NON–ROOT, it will request one of the tokens
with a certain probability after line 16 in the TSF
pseudocode if it is eligible. A device is eligible to
request the token if:

1. It is not holding a token

2. It has not requested a token

Join–Free(n1, n2)
1 if n1.score < n2.score
2 then make n1 master
3 else make n2 master
4 n1.holder1 ← myself
5 n1.holder2 ← n2

6 n1.type← ROOT
7 n2.holder1 ← n1

8 n2.holder2 ← myself
9 n2.type← ROOT

Figure 4: Join Procedure for Two FREE Nodes

3. It is not slave/slave. In this situation the device
cannot form a new piconet or join an existing
one without becoming involved in more than two
piconets.

4. It is not master/slave and the piconet for which
it is master has the maximum number of slaves.
It cannot connect and still be in at most two
piconets.

Next, consider what changes must be made to the
joining procedures in Section 2.1.

FREE and FREE If one of the devices has a lower
score, allow it to become the master of the newly
formed piconet. The score values are considered
similar to the way TSF considers the types of
a NON–ROOT device and FREE device when
such a connection occurs. When the connection
occurs, each device becomes a token holder (one
for tok1 and one for tok2) and updates the op-
posite holder pointer to the other device. The
pseudocode is shown in Figure 4.

NON–ROOT and FREE If the NON–ROOT is
slave/slave, no connection can be established
without violating the two piconet constraint. If
the NON–ROOT is already the master of a pi-
conet and does not have the maximum number
of slaves, the FREE device should join this pi-
conet. This helps minimize the number of pi-
conets by utilizing existing ones when possible.

7



If the NON–ROOT is only in one piconet and
is a slave, create a new piconet and the device
with the smaller score is master. The FREE
device should update both holder variables to
point to the erstwhile NON–ROOT device. The
pseudocode for the procedure is shown in Fig-
ure 5.

ROOT and ROOT The most extensive changes
must be made in this case. First, if either device
is slave/slave a connection cannot be established.
Next, if both devices are already in two piconets,
a connection is not possible. With these possibil-
ities removed, there are four scenarios that need
consideration:

1. If one device is master/slave and the other
is master/–, join the first device’s piconet
if it is not full. Otherwise, a connection
cannot be established.

2. If both devices are master/–, join the pi-
conet of the device with the lower score.
If this piconet is full, try to join the other
device’s piconet.

3. If both devices are slave/–, create a new
piconet and make the device with the lower
score master.

4. If one device is master/– and the other is
slave/–, try to join the existing piconet. If
it is full, start a new piconet where the erst-
while slave becomes the new master.

The algorithm for updating the tokens if the two
ROOT’s are from different scatternets is shown
in Figure 6.

There are some other issues that must be consid-
ered for the case of two ROOT devices joining. The
main consideration is how to handle the tokens. If
the two devices joining are from separate scatternets
(which can be determined if the distance between the
devices is ∞), both of the tokens should be removed
during the connection process. This maintains the
invariant that any scatternet will have exactly two
tokens. The proof of this is inductive. If both scat-
ternets had two tokens before the merge, then there

Join–Non–Root(n1, n2)
1 /* n1.type = NON–ROOT */
2 /* n2.type = FREE */
3
4 if n1 is slave/slave
5 then return
6 if n1 is a master and its piconet is not full
7 then join n1’s piconet
8 else if n1.score < n2.score
9 then make n1 master

10 else make n2 master
11 n2.holder1 ← n1

12 n2.holder2 ← n1

13 n2.type← NON–ROOT

Figure 5: Join Procedure for NON–ROOT and FREE
Nodes

exist four tokens at the instant the merge begins.
Two tokens must be present at the merging devices,
so if both tokens are removed only two tokens must
exist when the merge completes. If the devices are
from the same scatternet, neither token should be
removed. In either case, if the connection does not
occur, both tokens should remain in circulation. A
token is removed by making a device NON–ROOT,
making the respective holder variable point to the
other device and, if the respective request q is non–
empty, making a token request to the other device.

When tokens are removed from the tree there is
another complication to consider. For two separate
scatternets, S1 and S2, let device u1 be holder1 in
S1 and v1 be holder1 in S2. This means the holder1

variable in every device in S1 and S2 points to u1 and
v1, respectively. Now, define u2 and v2 to be holder2

in S1 and S2, respectively. If u1 and v1 merge the
scatternets, both tok1’s are removed. This creates an
inconsistency because all device’s holder1 is pointing
toward u1 and v1 where no token exists. Additionally,
some of the device’s holder2 will point to u2 while
others will point to v2. The solution to this problem
is devices which are both ROOT’s can only join if one
is holder1 and the other is holder2. The algorithm

8



Update–Tokens(n1, n2)
1 /* n1.holder1 = myself */
2 /* n2.holder2 = myself */
3
4 n1.type← NON–ROOT
5 n2.type← NON–ROOT
6 n1.holder1 ← n2

7 n2.holder2 ← n1

Figure 6: Updating Tokens for Two ROOT’s from
Disjoint Scatternets

for this situation is shown in Figure 6.

3.2.1 Forming Cycles

As mentioned previously, if some cycles are allowed
in the scatternet, connectivity can increase and con-
tention can decrease. Since TSF–T has two tokens in
any scatternet, cyclic links can be formed between the
token holders. Assuming a token holder has passed
the eligibility tests described in Section 3.2, we must
consider when token holders should form a cycle and
how it will affect the token passing algorithm.

First, the number of cyclic links per device should
be relatively small. Consider the case when a scat-
ternet, S1, is relatively large and no devices have at-
tempted to join in a long time (joining could be via
FREE devices or merging scatternets). If no limit
is placed on the number of cyclic links a device can
have, it is expected that after some time all the de-
vices will maximize the number of connections they
can handle. This is bad for two reasons. First, bat-
tery power is wasted since each device has more con-
nections than it probably needs (i.e. it only needs one
route to any given device). Secondly, if new devices
do attempt to join, S1 will not be able to merge be-
cause no devices can be added to a piconet or accept
any new slaves. Therefore, TSF–T limits the number
of cyclic links a device can have to two. This is the
value that was most efficient in the simulations.

Next, there should be a minimum hop count before
devices are allowed to form a cyclic link. Let d be the



Figure 7: Forming a Cyclic Link between Devices
Three Hops Apart

hop count between two devices. Obviously, if two de-
vices have d = 1, they already have a connection and
another would be redundant and useless in most cir-
cumstances. If d = 2, the devices are relatively close
and may in fact be slaves in the same piconet. Al-
lowing devices with d = 2 to join does not gain much
because two devices should not both be in the same
two piconets. For the situation where d = 3, there
are still scenarios where the extra link does not jus-
tify the cost. Consider the situation where there are
two piconets in existence. Let a piconet with device
1 as master and devices 2 and 3 as slave be denoted
P12,3. Assume the piconets are P12,3 and P42. If
cyclic links are allowed with d = 3, devices 3 and 4
could form P34. The only gain is the distance be-
tween 3 and 4 decreases from 3 to 1. The distance
to every other device in the scatternet remains un-
changed. This situation is shown in Figure 7. In this
figure, the master points to its slaves and the red ar-
row is the potential cyclic link being considered. This
gain is not worth the price (i.e. adding a connection
to each device, increasing the number of cyclic links
for these devices closer to the maximum and forming
a new piconet). Therefore, in TSF–T, cyclic links
can only be formed when d ≥ 4. Increasing this con-
straint presents a trade–off. If dmin is high, then
adding a cyclic link will reduce the hop counts more
significantly, but there is a lower probability such a
link will ever be formed.

The final issue considered in this section is how the
cyclic links affect the token passing algorithms in the
scatternet. Recall that Raymond’s Tree Algorithm is
designed to allow mutual exclusion in a tree. TSF–T
works by using two instances Raymond’s Tree Algo-
rithm operating concurrently. Therefore, the token

9



passing does not behave correctly in a graph, which
is produced by adding cyclic links. To maintain cor-
rect token passing, when a cyclic link is formed, no
update is made to either of the device’s holder point-
ers. This means the token passing algorithm has no
knowledge of this link that is formed and hence will
never use it. The routing protocol must have some
knowledge of the token passing so any time a token
or request message is sent, it will be sent on the di-
rect link between the two devices rather than routed
some other way. If shortest path routing is used with
respect to hop count, this is not an issue. However,
if some other metric is used, the token and request
messages could be send along a different path. This
notification could be accomplished by some means
similar to the router alert option in IP.

4 Simulations

This section presents the results of simulations done
to compare the performance of TSF and TSF–T. The
results show that TSF–T consistently generates fewer
scatternets than TSF. The number of piconets is also
reduced. Furthermore, reduced connection times are
obtained when using TSF–T. All this comes at the
cost of higher network diameter.

4.1 Simulation Setup

We designed software to perform the simulations us-
ing aspects of the Bluetooth protocol. The ns-2 sim-
ulator [7] with Bluetooth extensions [8] was not used
because we were unable to obtain a copy of the orig-
inal TSF protocols from the authors [9]. Our simu-
lator modeled the frequency hopping, INQUIRY and
PAGE states. We did not include collisions and back-
off. In comparing the timing of our simulator with the
results presented in [3], our numbers were compara-
ble but not close enough to be measured against ns-2.
Therefore, all the timing comparisons are shown on a
relative, not absolute scale. We feel the inaccuracy of
timing in our simulator should affect TSF and TSF–T
equally.

Simulations were performed using 10, 20, 30, 40,
50 and 60 Bluetooth devices. For each number of

Parameter Value
E[Tinq] 5.12 s

D 10.0 s
Pr[tokenrequest] 0.25

agethreshold 1000 s
dmin 4

cyclic linksmax 2

Table 2: Parameter Values in Simulations

nodes, 10 different settings were tested with 10 runs
performed for each setting. All nodes arrive at the
same time. Simulations are run until a steady state
is reached for TSF, and for a short period of time
after that for TSF–T, to give time for extra links to
form. The upper bound for the running time of the
simulations was 200s, which should be sufficient for
the amount of time a device is willing to wait to form
a scatternet connection.

Unless stated otherwise, the simulations were done
with a density of 0.14 nodes per 100m2 where not
all nodes are in range of every other node, but ev-
ery node is in range with at least one other node.
Some simulations were performed in a less dense set-
ting (0.10 nodes per 100m2) to show in those cases
TSF–T improvements over TSF are even greater. It
should be noted that the nodes in the simulation are
considered to be “in range” when they are separated
by no more than 80m.

Table 2 summarizes the heuristic values used for
the simulation (unless stated otherwise). E[Tinq]
and D are parameters from the TSF algorithm
(we tuned them through simulations because [3]
does not mention the values that should be used).
Pr[tokenrequest] is the probability a token is re-
quested. The agethreshold parameter is how long the
device has been in the current scatternet. It is inten-
tionally set to a value that has no effect since we are
more concerned with initial scatternet formation and
no value was provided in the original TSF specifica-
tion. The dmin and cyclic linksmax parameters are
described in Section 3.2.1.

10



0
5

10
15

20
25
30
35

nodes

TSF

TSF-T

10 20 30 40 50 60

Figure 8: Number of Piconets Formed

4.2 Number of Piconets

As stated earlier, it is convenient to have less piconets
to reduce the number of bridge devices and the num-
ber of collisions due to shared channels. Figure 8
shows that TSF–T forms fewer piconets in every case.

4.3 Connectivity

In practice, connectivity may be the most important
metric. Many real–life applications may turn out to
not be usable if multiple scatternets are formed in-
stead of one (we want to be able to send messages to
any node, not to just a limited set of nodes).

We present various results that show that TSF–T
provides improved connectivity compared to TSF.
This is the expected result because TSF, unlike
TSF–T, limits the bridge connections to master/slave
types.

The number of scatternets formed on each run is
an indicator of connectivity. If only one scatternet is
formed, any two nodes can communicate with each
other. If more than one scatternet is formed, many
pairs of nodes are prevented from communicating.
Figure 9 shows the significant improvement in this
metric when using TSF–T. The use of tokens enables
more nodes to connect as bridges, thus, improving
connectivity and allowing the formation of only one
scatternet most of the time.

TSF–T’s improvement over TSF with respect to
the number of scatternets formed is even greater in
cases with less node density (shown in Figure 10 with

0

0.5

1

1.5

2

2.5

3

10 20 30 40 50 60
nodes

TSF

TSF-T

Figure 9: Number of Scatternets Formed in a Dense
Setting

0
0.5

1
1.5

2
2.5

3
3.5

10 20 30 40 50 60
nodes

TSF

TSF-T

Figure 10: Number of Scatternets Formed in a Sparse
Setting

0.10 nodes per 100m2 ).
Another interesting value is the percentage of times

only one scatternet is formed using each algorithm.
Figure 11 shows that while TSF–T is able to form
one scatternet almost all the time, TSF performance
decreases if more nodes are present.

4.4 Scatternet Formation Time

The use of tokens does not only help in improving
connectivity, but it also helps in reducing the scat-
ternet formation time. Figure 12 shows the improve-
ment in scatternet formation time obtained with us-
ing TSF–T compared to TSF. By analyzing the graph
we can observe that in most of the cases we can obtain
more than 50% reduction of the scatternet formation
time by using TSF–T.

11



0

20

40

60

80

100

10 20 30 40 50 60
nodes

TSF

TSF-T

Figure 11: Percentage of Times One Scatternet is
Formed

0

10

20

30

40

50

60

70

10 20 30 40 50 60

nodes

Figure 12: Improvement in Scatternet Formation
Time

4.5 Degree

TSF–T was designed not only to improve connectiv-
ity, but also to keep into consideration certain char-
acteristics such as mobility, processing capabilities or
power consumption when forming the scatternet. Ta-
ble 3 shows the average degree for each kind of de-
vice (averaged over 600 runs with varying number of
nodes). The results show that TSF–T is able to form
scatternets where the most powerful devices (score
= 0) handle more work than the least powerful and
more mobile devices (score = 2).

This property makes TSF–T more fault tolerant
than TSF since the least powerful devices (or the
more mobile ones) handle less work than the more
powerful ones.

Degree
Score TSF TSF–T

0 1.88 2.11
1 1.86 2.01
2 1.92 1.93

Table 3: Average Degree for Device Types

0.40
0.42

0.44
0.46
0.48
0.50

0.52
0.54

10 20 30 40 50 60

nodes

TSF

TSF-T

Figure 13: Percentage of Devices which are not Mas-
ters

4.6 Slave Percentage

It is important to increase the number of devices that
are just slaves or that form slave/slave bridges. Fig-
ure 13 presents a comparison of the percentage of
devices that are not masters in any piconet. Note
that higher percentage of slaves is better. As a sim-
ple example, consider the case where eight devices
are going to form a scatternet. The ideal scenario is
when they form one piconet with a master and seven
slaves. This gives 7

8 slave percentage.

4.7 Network Diameter

To compare the network diameter of the scatternets
formed using each algorithm, we ran tests in a more
dense setting than before (0.31 nodes per 100m2) and
we only considered those cases when only one scatter-
net was formed. The runs where more than one scat-
ternet was formed were discarded since in those cases
the network diameter is smaller because the scatter-
nets themselves are smaller. Figure 14 presents the
results of the experiments. It can be observed that

12



0
5

10
15

20
25

30
35

10 20 30 40 50 60
nodes

TSF

TSF-T

Figure 14: Network Diameter of Scatternets

TSF–T produces scatternets with a higher network
diameter than those formed using TSF. This may be
due to the fact TSF–T’s tree is not as balanced.

5 Future Work

The simulation results provided have shown that
TSF–T performs better than TSF. Its characteris-
tics and few drawbacks make it appropriate to use
in Bluetooth scatternet formation. Issues that need
deeper analysis include:

• Fault-tolerance: Studies need to be done regard-
ing fault-tolerance in TSF–T. What happens if a
token-holder node stops working? What are the
implications and possible solutions if a master or
bridge node stops working?

• Routing : TSF–T depends on an underlying
Bluetooth routing mechanism. It is worthwhile
to study different routing mechanisms and their
implications when combined with TSF–T.

• Real-life testing : Simulations have shown that
TSF–T is a viable alternative for scatternet for-
mation in Bluetooth. It would be interesting to
see it in action in different Bluetooth scenarios.

• Mobility, Processing Capabilities and Power
Consumption: It was mentioned earlier that
TSF–T takes into consideration the score of a
device when establishing connections between
nodes. The most powerful, less mobile devices

are preferred masters, since they are less likely
to fail. Another approach to the usage of the
score of a device is to take it into considera-
tion when requesting the token. It seems that
making the devices with lower score request the
token more frequently than the devices with a
higher score may be a good idea. In the simu-
lation, the probability a device requests a token
is fixed. This probability should be tested as a
function of variables such as degree, time of last
successful connection and score.

• Score: TSF–T assumes that the lower the score,
the less mobile and more powerful a device is.
But what are the exact criteria for assigning a
particular score to a device? What should be
the range of values for the score? Security is-
sues should also be considered; for example, ma-
licious devices may assign themselves the highest
score possible even if they are able to manage a
greater workload. How can this be prevented (or
detected)?

• Multiple tokens: TSF–T considers the use of
two simultaneous tokens to improve connectiv-
ity. Each token is handled in a separate over-
lay of Raymond’s Tree Algorithm. It is possible
that greater performance improvement can be
obtained by adding more tokens. But overlaying
more Raymond trees is not a feasible solution.
Other algorithms should be considered and ana-
lyzed. [10] provides an multiple node extension
to Raymond. Simulations should be done as to
determine if allowing more than two nodes to
circulate at the same time leads to better per-
formance results.

• Simulation with random arrival times Both this
study and the original TSF paper do not simu-
late devices entering at random times. It would
be interesting to compare the protocols when de-
vices do not all arrive at the same time, as well
as when devices leave the scatternets.

13



6 Conclusion

This paper presented TSF–T, a new Bluetooth scat-
ternet formation algorithm that introduces the con-
cept of using tokens to improve connectivity when
forming scatternets. TSF–T efficiently forms scatter-
nets by using tokens (circulating according to Ray-
mond’s Algorithm) to determine which nodes are able
to connect with other nodes at a given time. Unlike
other scatternet formation algorithms, TSF–T is able
to efficiently form scatternets even if not all nodes are
in range of each other.

Simulations show that TSF–T performs signifi-
cantly better than TSF with respect to connectivity
and connection time. TSF–T takes into considera-
tion the mobility, processing, and power consump-
tion characteristics when forming scatternets, which
makes TSF–T more fault-tolerant than TSF. The
scatternets formed with TSF–T have less master’s
than with TSF. This is shown with an analysis of the
slave percent metric introduced in the paper. TSF–T
is a promising algorithm for Bluetooth scatternet for-
mation.

Acknowledgements

We would like to thank Dr. Jennifer Hou for helping
us formulate the idea for this project and suggesting
the token passing approach.

References

[1] The Bluetooth Special Interest Group.
http://www.bluetooth.com.

[2] J. Haartsen, “Bluetooth—The universal radio inter-
face for ad hoc, wireless connectivity,” Ericsson Re-
view, no. 3, 1998.

[3] G. Tan, A. Miu, J. Guttag, and H. Balakrish-
nan, “Forming Scatternets from Bluetooth Personal
Area Networks,” Technical Report MIT–LCS–TR–
826, MIT Laboratory for Computer Science, October
2001.

[4] T. Salonidis, P. Bhagwat, L. Tassiulus, and
R. LaMaire, “Distributed Topology Construction

of Bluetooth Personal Area Networks,” in Proceed-
ings of the Twentieth Annual Joint Conference of
the IEEE Computer and Communications Societies,
2001.

[5] C. Law, A. K. Mehta, and K.-Y. Siu, “Performance
of a New Bluetooth Scatternet Formation Protocol,”
in Proceedings of the ACM Symposium on Mobile
Ad Hoc Networking and Computing (MobiHoc) 2001,
October 2001.

[6] K. Raymond, “A Tree–Based Algorithm for Dis-
tributed Mutual Exclusion,” ACM Transactions of
Computer Systems, pp. 61–77, February 1989.

[7] The ns-2 Network Simulator.
http://www.isi.edu/nsnam/vint.

[8] Bluetooth Extension for ns-2.
http://oss.software.ibm.com/bluehoc.

[9] Blueware Project.
http://www.nms.lcs.mit.edu/projects/blueware.

[10] J. Walter, G. Cao, and M. Mohanty, “A K–Mutual
Exclusion Algorithm for Ad Hoc Wireless Net-
works,” in Proceedings of the First Annual Workshop
on Principles of Mobile Computing (POMC 2001),
August 2001.

14


